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Abstract

Shannon theoretic secret key generation by several parties is considered for models

in which a secure noisy channel with multiple input and output terminals and a public

noiseless channel of unlimited capacity are available for accomplishing this goal. The

secret key is generated for a set A of terminals of the noisy channel, with the remain-

ing terminals (if any) cooperating in this task through their public communication.

Single-letter lower and upper bounds for secrecy capacities are obtained when secrecy

is required from an eavesdropper that observes only the public communication and

perhaps also a set of terminals disjoint from A. These bounds coincide in special cases,

but not in general. We also consider models in which different sets of terminals share

multiple keys, one for terminals in each set with secrecy required from the eavesdropper

as well as the remaining terminals in the other sets. Partial results include showing

links among the associated secrecy capacity region for multiple keys, the transmission

capacity region of the multiple access channel defined by the secure noisy channel, and

achievable rates for a single secret key for all the terminals.
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1 Introduction

Separate terminals with the means to transact over a secure noisy channel as well as a public

noiseless channel, can devise a secret key more effectively than by using the secure channel

alone. A secret key, in the Shannon theoretic sense, is common randomness of near uniform

distribution regarding which an eavesdropper, which observes the public communication

and perhaps also possesses additional observations available or unavailable to the terminals

engaged in secrecy generation, can glean only a negligible amount of information.

The first Shannon theoretic model for generating a secret key over a noisy channel was

Wyner’s wiretap channel [20], generalized by Csiszár and Körner [6]. This model did not

allow for public communication, and secret key generation was tantamount to secure trans-

mission over the noisy channel, when the eavesdropper had access to wiretap side information.

The fact that secrecy generation could be enhanced by public communication was illustrated

by Bennett, Brassard and Robert [3]. Models for secrecy generation which entailed two ter-

minals communicating over a public noiseless channel, were examined in detail by Maurer [15]

and Ahlswede and Csiszár [1]. These models involve either a discrete memoryless multiple

source (DMMS) with two components accessible to one terminal each, or a discrete mem-

oryless channel (DMC) with one input terminal and one output terminal. In both types

of models, an additional “wiretapped” terminal may or may not be present. The sizable

literature on such models includes Maurer [16], Bennett, Brassard, Crépeau and Maurer [4],

Csiszár [5], Maurer and Wolf [17], [18], Csiszár and Narayan [8, 9], Renner and Wolf [19],

Gohari and Anantharam [2], and a comprehensive treatment in Csiszár and Körner [7]. A

single-letter characterization of the secrecy capacity – the largest rate at which a secret key

can be generated – is known in special cases, e.g., when a wiretapped terminal is absent or

when the wiretapped terminal reveals itself to the parties generating secrecy.

In our previous work, we had studied secrecy generation for a multiterminal source model

where each participating terminal had access to one component of a discrete memoryless

multiple source [8, 9], and for a multiterminal channel model which involved an underlying

DMC with a single input and multiple outputs [9]; in both models, unrestricted and noiseless

public communication between the terminals was permitted, to which the eavesdropper

2



had full access. In this paper, which constitutes a continuation of our work in [9], [10],

we examine channel models for secrecy generation which involve an underlying DMC with

multiple inputs and outputs. Terminals 1, . . . , k govern the inputs and terminals k+1, . . . ,m

observe the corresponding outputs. Following each transmission of symbols by the input

terminals over the DMC, communication over a public noiseless channel of unlimited capacity

is allowed between all the terminals, which may be interactive and which is observed by all

the terminals1. The goal is to generate secret common randomness shared by a given set

A ⊂ {1, . . . ,m} of terminals at the largest rate possible. Thus, the resulting key must be

accessible to every terminal in A. It need not be accessible to the terminals not in A, but nor

is it required to be concealed from them, with the possible exception of a set D of terminals

which are “wiretapped” by the eavesdropper (where A ∩ D = ∅). A DMC input terminal

may or may not belong to the set A or D.

We restrict ourselves to models where all the terminals cooperate, including those that are

wiretapped (if D 6= ∅), in generating a secret key for the terminals in A, with secrecy being

required from the eavesdropper that has access to only the public communication and the

information available to the wiretapped terminals in D. Also, we assume the eavesdropper

to be passive, i.e., unable to tamper with the communication of the legitimate terminals.

We do not address models with wiretap side information in which the underlying DMC

also has an additional output terminal that is wiretapped by the eavesdropper and does not

cooperate in secrecy generation (cf. e.g., [15, 1, 17, 19, 8, 9, 11, 12]).

The problem of secrecy generation for a general multiterminal channel model studied

in this paper appears more difficult than its special case for a channel with a single input.

Single-letter characterizations of secrecy capacities for the latter have been given in [9].

For the general channel model, short of providing single-letter characterizations of secrecy

capacities, our main contributions are the following. One possible operational strategy in

a channel model as above is source emulation which entails the channel input terminals

transmitting independent sequences of random variables (rvs) over the DMC with the output

terminals observing the corresponding output sequences. The emulated source model leads

1For ease of distinction between the use of the DMC and the use of the public channel, hereafter the

former will be termed “transmission” while the latter will be referred to as “communication.”
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to our achievability results which furnish lower bounds for the secrecy capacities; it is likely

that these bounds are not tight in general. Our converse results provide upper bounds for the

secrecy capacities using familiar techniques from Shannon theory, but are difficult and rely

on two entropy inequalities from our previous work [9] which may be of independent interest.

Our lower and upper bounds coincide only in special cases. We also consider multiterminal

channel models in which different subsets of terminals share multiple keys, one for terminals

in each set with secrecy required from the eavesdropper as well as the remaining terminals in

the other sets. Partial results include showing links among the associated secrecy capacity

region for multiple keys, the transmission capacity region of the multiple access channel

(MAC) defined by the DMC, and achievable rates for a single secret key shared by a subset

of the terminals. We illustrate our results and their limitations by four examples of secrecy

generation in simple multiterminal channel models.

Our problem formulations are described in Section 2. Section 3 treats secrecy generation

for DMCs with a single output based on elementary tools. Our general single-letter lower

and upper bounds for secrecy capacities are presented in Sections 4 and 5, respectively.

Illustrative examples are given in Section 6. A closing discussion is contained in Section 7.

2 Preliminaries

All rvs are assumed to take values in finite sets, even if not stated explicitly. An rv will

be denoted by an uppercase letter and its range by the corresponding script capital unless

stated otherwise. The cardinality of a finite set X is denoted by |X |. Logarithms are with

respect to the base 2. For integers l ≤ k, we denote [l, k] = (l, . . . , k).

We consider multiterminal channel models of the following kind. Terminals 1, . . . , k, with

finite alphabets X1, . . . ,Xk, are connected to terminals k + 1, . . . ,m, with finite alphabets

Xk+1, . . . ,Xm, respectively, by a DMC W : X1 × · · · × Xk → Xk+1 × . . . × Xm. Terminals

1, . . . , k govern the inputs of the DMC over which they transmit securely sequences of length

n, while terminals k + 1, . . . ,m observe the corresponding output sequences of length n. In

between consecutive symbol transmissions over the DMC (with instantaneous receptions),

the terminals inM = {1, . . . ,m} are allowed to communicate over a public noiseless channel
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of unlimited capacity. In any transmission or communication by a terminal, randomization

is permitted. The public communication is observed by all the terminals inM as well as by

an eavesdropper.

When randomization is permitted at terminal i ∈ M, we shall assume that it generates

at the outset a rv Ui; the rvs U1, . . . , Um are mutually independent. Every input terminal

i ∈ [1, k] transmits n symbols Xi1, Xi2, . . . , Xin over the DMC W at time instants τ1 < τ2 <

. . . < τn, and every output terminal i ∈ [k+1,m] observes the corresponding output symbols

Xi1, Xi2, . . . , Xin. In addition, communication among the terminals in M over the public

channel occurs – possibly interactively and in several rounds – during the time-intervals

(τt, τt+1), for t = 1, . . . , n− 1, and immediately following τn, which hereafter will be referred

to simply as intervals t = 1, . . . , n. The public communication of all the terminals in interval

t is depicted collectively as Ft, and we denote F = (F1, . . . , Fn).

In general, terminal i ∈ [1, k] determines its tth input Xit of the DMC W as a function

of Ui for t = 1, and of (Ui, F1, . . . , Ft−1) for t = 2, . . . , n. Also, the communication of

terminal i ∈ M in interval t is allowed to depend on Ui, the symbols (Xi1, . . . , Xit) earlier

generated or observed by terminal i, and on all earlier communication (F1, . . . , Ft−1). While

this general framework admits complex transmission and communication protocols, in our

achievability proofs we shall use only simple noninteractive communication protocols with

input terminals i ∈ [1, k] not sending any public messages at all, and each output terminal

i ∈ [k + 1,m] sending at most one public message fi = fi (X
n
i ) and that upon completion of

the n transmissions over the DMC; in this case, F = Fn = (fi (X
n
i ) , i ∈ [1, k]).

For rvs Xi, i ∈ M, we shall use the shorthand notation XB = (Xi, i ∈ B) for sets

B ⊂ M, and, as a special case, X[a,b] = (Xa, . . . , Xb) for 1 ≤ a ≤ b ≤ m. Also, we shall

write X t
B = (XB1, . . . , XBt) for B ⊂ M, 1 ≤ t ≤ n, where XBj = (Xij, i ∈ B) , 1 ≤ j ≤ t;

in particular, X t
i = (Xi1, . . . , Xit) for i ∈M, 1 ≤ t ≤ n.

The following concepts introduced in [8] will be used. Given ε > 0, a rv U is ε-recoverable

from V if Pr{U 6= f(V )} ≤ ε for some function f(V ) of V . For rvs K and Y , to be interpreted

as representing a secret key and the eavesdropper’s knowledge, respectively, the information

theoretic security index is

s(K;Y ) = log |K| −H(K|Y ).
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Smallness of this security index is tantamount jointly to a nearly uniform distribution for K

(i.e., log |K| − H(K) is small) and to the near independence of K and Y (i.e., the mutual

information I(K ∧ Y ) is close to 0).

Definition 1: Given any set A ⊂ M of size |A| ≥ 2, a rv K constitutes an (ε, δ)-

secret key ((ε, δ)-SK) for the set of terminals A, achievable with n uses of the DMC W ,

randomization UM and public communication F, if K is ε-recoverable from (Ui, X
n
i ,F) for

each i ∈ A and, in addition, it satisfies the secrecy condition

s(K; F) ≤ δ. (1)

An (ε, δ)-SK as above is called an (ε, δ)-private key ((ε, δ)-PK) for the set of terminals A,

private from the set of terminals D ⊂M with A ∩D = ∅, if it satisfies the stronger secrecy

condition

s(K;UD, X
n
D,F) ≤ δ. (2)

By definition, an (ε, δ)-SK is recoverable at the terminals in A, and is nearly uniformly

distributed and effectively concealed from an eavesdropper with access to the public commu-

nication F; it need not be concealed from the terminals in Ac =M\A. On the other hand,

an (ε, δ)-PK for A is effectively concealed from an eavesdropper with access — in addition

to the public communication F — also to a set D ⊂ Ac of “wiretapped” or “compromised”

terminals. This (ε, δ)-PK need not be concealed from the terminals in Ac\D. Note that the

compromised terminals can cooperate in the secrecy generation through their public commu-

nication. Indeed, it can be assumed without loss of generality (w.l.o.g.) that the terminals

in D reveal publicly all the information in their possession (which, anyway, is accessible to

the eavesdropper). This assumption will be made usually without explicit mention.

Definition 2: A number R is an achievable SK rate for a set of terminals A ⊂ M if

there exist (εn, δn)-secret keys K(n) achievable for A with n uses of the DMC W , suitable

randomization UM and public communication F(n), such that

εn → 0, δn → 0 and
1

n
log |K(n)| → R as n→∞.

The largest achievable SK rate for A is the SK capacity CS(A). Achievable PK rates and

PK capacity CP (A|D) are defined similarly.
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Remark: Our converse proofs stand under the requirement of “weak” secrecy, i.e., δn =

o(n) while εn decays to 0 [15, 1]. The achievability results hold with both εn and δn decaying

to 0 exponentially rapidly thereby affording “strong” secrecy [16, 5, 7].

In general, any number of DMC input and output terminals may be wiretapped (barring

two terminals to avoid the trivial). However, it is obvious that the wiretapped input terminals

(if any) can be coalesced, as can the wiretapped output terminals. The next lemma shows

that attention can be restricted even to such models in which no input terminal, and at most

one output terminal, is wiretapped. Nevertheless, we shall find it convenient throughout to

adhere to the original model above and take recourse only occasionally to the following

reduction lemma.

Lemma 1: For any DMC W : X1 × · · · × Xk → Xk+1 × . . . × Xm and D ⊂ M with

0 ≤ |D| ≤ m−2, there exists a DMC W̃ : X̃1×· · ·×X̃k̃ → X̃k+1×. . .×X̃m̃ with k̃ equal to the

number of input terminals of W not in D, or k̃ = 1 if [1, k] ⊂ D, such that for each A ⊂M

disjoint from D, the PK capacity CP (A|D) for W and D is equal to the corresponding PK

capacity for W̃ and D̃ = {m̃}.

Remark: By the Lemma, any channel model with at most one uncompromised input

terminal can be reduced to a model with just one input terminal; for the latter, a single-

letter solution for PK capacity is available ([9], Theorem 4.1).

Proof: By the passage preceding the Lemma, we can assume w.l.o.g. that D = {k} or

D = {k,m}. In the first case, let m̃ = m+ 1, X̃i
∆
= Xi for i ∈ [k+ 1,m] and X̃m̃

∆
= Xk, while

in the second case let m̃ = m, X̃i = Xi for i ∈ [k+ 1,m− 1] and X̃m̃
∆
= Xm×Xk. Further, let

X̃1 = X1 if k = 1 (when k̃ = 1) and if k > 1 (when k̃ = k − 1), let X̃i
∆
= Xi for i ∈ [1, k − 2]

and X̃k−1
∆
= Xk−1 ×Xk.

In either case, input k̃-tuples of W̃ are identified in an obvious manner with input k-

tuples x = x1, . . . , xk of W , and output (m̃− k)-tuples of W̃ are regarded as being obtained

by appending an x′k ∈ Xk to the output (m − k)-tuples y of W . The definition of W̃ is
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completed by setting

W̃ (yx′k|x)
∆
=

 W (y|x) if x′k = xk

0 if x′k 6= xk.

In other words, the DMC W̃ behaves as W but additionally transmits noiselessly the input

of terminal k of W to the terminal m̃ of W̃ . When D = {k,m}, the terminal m̃ of W̃ also

receives the output of terminal m of W . Thus, in both the cases D = {k} and D = {k,m},

the single wiretapped terminal m̃ of W̃ will possess the same information as the wiretapped

terminal(s) of W . It follows that each protocol for W and D gives rise to a protocol for W̃

and D̃ = {m̃} with identical secrecy performance, and also reciprocally so. �

We shall also consider models in which different subsets of the terminals in M share

multiple keys, one for the terminals in each subset with privacy from the remaining terminals

in M that are not members of that subset.

Definition 3: Given different subsets A1, . . . , Al of M, l ≥ 1, the rvs K1, . . . , Kl con-

stitute (ε, δ)-PKs for the terminals in A1, . . . , Al, respectively, if for each i ∈ [1, l], Ki is

an (ε, δ)-PK for the terminals in Ai, private from the terminals in M\Ai. The numbers

R1, . . . , Rl are achievable PK rates for the terminals in A1, . . . , Al if there exist (εn, δn)-PKs

achievable for A1, . . . , Al with n uses of the DMC W , suitable randomization UM and public

communication F(n), such that

εn → 0, δn → 0 and
1

n
log |K(n)

i | → Ri as n→∞

for i = 1, . . . , l. The set of all achievable PK rates is the PK capacity region CP (A1, . . . , Al).

For the case l = 1, CP (A1) = CP (A1|Ac1) of Definition 2.

Remark: The PK capacity region is a closed convex set. The former is clear from the

definition while the latter is a consequence of a standard time-sharing argument.

3 Models with Single Output

In this section, we consider DMCs with a sole output for which simple results are presented

that do not require any sophisticated tools.
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Let W : X1 × · · · × Xm−1 → Xm be a DMC with k = m − 1 input terminals and

one output terminal, and let A be any set of terminals of size |A| ≥ 2 which contains the

output terminal m. Denote by C the (average error) capacity region of the multiple access

channel (MAC) W , and by C(A) its projection on the (|A| − 1)-dimensional subspace of

R
m−1 spanned by the coordinate axes {i : i ∈ A\{m}}. Further, consider the PK capacity

region CP ({Ai, i ∈ A\{m}}) for the pairs of terminals Ai = {i,m}, i ∈ A\{m}.

Theorem 2: For A and Ai = {i,m}, i ∈ A\{m} as above, it holds that

(i) CP ({Ai, i ∈ A\{m}}) ⊃ C(A);

(ii) AnyR > 0 such that the (|A|−1)-dimensional vector (R, . . . , R) belongs to CP ({Ai, i ∈

A\{m}}), is a lower bound for the PK capacity CP (A|Ac).

Corollary: It holds that

CS(A) ≥ CP (A|Ac) ≥ max
{
R : (R, . . . , R) ∈ CP ({Ai, i ∈ A\{m}})

}
≥ max

{
R : (R, . . . , R) ∈ C(A)

}
.

Further, any R such that (R, . . . , R) ∈ C(A) can be achieved as an SK rate for A or PK rate

for A with privacy from Ac, with no public communication by the input terminals and with

only the output terminal m sending a public message.

Proof: (i) By definition, each (Ri, i ∈ A\{m}) ∈ C(A) arises from some (R1, . . . , Rm−1) ∈

C by deleting the components Ri with i 6∈ A; it can be supposed w.l.o.g. that all these deleted

components are equal to 0. It is easy to see that an achievable rate tuple (R1, . . . , Rm−1)

for transmission over a MAC W , in which some components Ri are 0, can be achieved by

codes whose message sets corresponding to the zero rates are singletons (rather than merely

of subexponential size). It follows that for each (Ri, i ∈ A\{m}) ∈ C(A), there exist en-

coders fi : Ki → X n
i , i ∈ A\{m}, with |Ki| = exp(nR′i), with R′i arbitrarily close to Ri, and

deterministic sequences xni ∈ X n
i , i ∈ [1,m− 1]\A, with the following property: If the MAC

inputs are

Xn
i

∆
=

 fi(Ki), i ∈ A\{m}

xni , otherwise,

where the rvs Ki, uniformly distributed on Ki, are mutually independent, then the rvs Ki are
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recoverable from the MAC output Xn
m with probability approaching 1 as n→ 1. This proves

that (Ri, i ∈ A\{m}) is an achievable PK rate-tuple for the pairs Ai = {i,m}, i ∈ A\{m},

achievable without any public communication.

(ii) Suppose that (R, . . . , R) ∈ CP ({Ai, i ∈ A\{m}}), and consider PKs for the pairs

Ai = {i,m}, i ∈ A\{m}, represented by rvs Ki distributed on K ∆
= {1, . . . , exp(nR′)} with

R′ close to R, and satisfying the secrecy condition (2) withM\{i,m} in the role of D. Then,

arbitrarily fixing i1 ∈ A\{m}, the rv Ki1 becomes a PK for the terminals in A, private from

D
∆
= Ac, if terminal m broadcasts the mod |K| sums Ki1 +Ki, i ∈ A\{i1,m}.

The Corollary is immediate. �

In Section 6, we shall give an example where the trivial inner bound for the PK capacity

region CP ({Ai, i ∈ A\{m}}) and the lower bounds for the SK capacity CS(A), both above,

are tight. It remains open whether they are tight in general. Here we present a weaker result

than the tightness of the lower bounds for CS(A) in the Corollary of Theorem 2, and which

is straightforward.

Theorem 3: For any A 3 m, the SK capacity CS(A) is positive iff there exists

(R1, . . . , Rm−1) ∈ C such that Ri > 0 for each i ∈ A\{m}.

Proof: Sufficiency is obvious by the Corollary of Theorem 2. For necessity, note

that if no (R1, . . . , Rm−1) as above exists, then – using the convexity of C – for some

i1 ∈ A\{m} we must have that Ri1 = 0 for every (R1, . . . , Rm−1) ∈ C. The latter means that

W (xm|x1, . . . , xm−1) does not depend on xi1 , and this would imply that the SK capacity is

0 even if the terminals inM\{i1} were allowed to communicate securely among themselves.

For a formal proof, note that upon regarding the terminals in M\{i1} as a consolidated

party L, any use of the DMC W amounts to a randomization performed by party L (since

the choice of channel input at terminal i1 does not influence the output). However, it is

well-known that two parties (here {i1} and L), with no resources other than the ability of

randomization and of public communication, cannot generate an SK; see, for example, [15].

Remark: Theorem 3 does not extend to DMCs with two or more outputs even if there is
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only one input. Indeed, for a DMC with a single input andm−1 ≥ 2 outputs, the SK capacity

can be positive even if each component channel Wi, i = 2, . . . ,m−1 (where Wi(xi|x1) equals

the sum of W (x′2, . . . , x
′
m|x1) over all x′2, . . . , x

′
m with x′i = xi) has capacity 0; see ([9],

Example 1). See also Example 4 in Section 6.

4 General Lower Bounds for SK and PK Capacities

Our techniques developed in [9] will be used to derive bounds for SK and PK capacities for

the general DMC model introduced in Section 2. Our results are partial; unlike in [9], the

lower bounds in this section and the upper bounds in the next section agree only in special

cases.

One way to generate an SK or a PK for a multiterminal channel model is by simple source

emulation. If the input terminals in [1, k] use i.i.d. repetitions of a k-tuple of rvs X1, . . . , Xk,

such that the Xis assigned to the nonwiretapped terminals i ∈ [1, k]\D are conditionally

independent given X[1,k]∩D, the DMC W will generate i.i.d. repetitions of an m-tuple of rvs

X1, . . . , Xm, whose joint probability mass function (pmf) is given by

PXM(x[1,m]) = PX[1,k]
(x[1,k])W (x[k+1,m]|x[1,k]), x[1,m] ∈ ×mi=1Xi. (3)

with each output terminal i ∈ [k + 1, . . . ,m] observing i.i.d. repetitions of Xi. Clearly,

achievable SK rates for the source model defined by XM = (X1, . . . , Xm) will be achievable

for the channel model, as well.

A general form of source emulation entails the use of an auxiliary source. Let us consider

the PK generation problem with a given set D ⊂M of wiretapped terminals; SK generation

obtains as the special case D = ∅. Let V be a (finite) auxiliary alphabet, and consider rvs

V,X1, . . . , Xk such that (V,X[1,k]∩D) has an arbitrary joint pmf, and the Xis, i ∈ [1, k]\D,

are conditionally independent given (V,X[1,k]∩D). Moreover, let Xi, i ∈ [k+ 1,m], represent

the outputs of the DMC W corresponding to input X[1,k], satisfying the Markov condition

V −◦−X[1,k] −◦−X[k+1,m], (4)
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so that the pmf of (V,XM) is

PV XM(v, x[1,m]) = PV X[1,k]∩D(ṽ)
∏

i∈[1,k]\D

PXi|V X[1,k]∩D(xi|ṽ)W (x[k+1,m]|x[1,k]), (5)

where ṽ = (v, {xi, i ∈ [1, k] ∩D}).

An associated source model is defined by assigning rvs V and Xi, i ∈ M, with a joint

pmf as above, to m + 1 terminals 0, 1, . . . ,m, letting the set of wiretapped terminals be

D̄
∆
= D∪{0}. Clearly, this source model can be emulated by our given multiterminal channel

model. First, the rvs V,X[1,k]∩D with an arbitrarily specified joint pmf are generated by one of

the input terminals and revealed as required by the source model (since {0}∪D∩ [1, k] ⊂ D̄).

Then, the terminals i ∈ [1, k]\D can generate the rvs Xi conditionally independently given

V,X[1,k]∩D, and use them as their channel inputs while the rvs Xi, i ∈ [1, k] ∩ D, are used

as channel inputs by the corresponding terminals. These inputs, in turn, give rise to the

channel outputs Xi, i ∈ [k + 1,m].

The single-letter formulas available for the SK and PK capacities of a source model [8, 9]

afford lower bounds for the corresponding capacities of the multiterminal channel model, as

the suprema of SK or PK capacities of source models obtainable by simple or general source

emulation as above. These lower bounds will be stated formally in Theorem 4.

As in [9], given any set A ⊂ M of size |A| ≥ 2, we denote by B(A) the family of all

nonempty sets B ⊂M that do not contain A, and by Λ(A) the set of all |B(A)|-dimensional

vectors λ = {λB : B ∈ B(A)}, with 0 ≤ λB ≤ 1, that satisfy∑
B∈B(A): B3i

λB = 1 for each i ∈M. (6)

Also, if a set D ⊂ Ac is given, B(A|D) and Λ(A|D) are defined analogously, restricting B to

subsets of Dc and replacing (6) by∑
B∈B(A|D): B3i

λB = 1 for each i ∈ Dc. (7)

In the parlance of combinatorics, the vectors in Λ(A) (resp. Λ(A|D)) are fractional partitions

of M (resp. Dc) into members of B(A) (resp. B(A|D)) (cf. e.g., [13]).

The following quantities will play an important role:

GA(XM, V, λ)
∆
= H(XM|V ) −

∑
B∈B(A)

λBH(XB|XBc , V ) (8)
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and

GA|D(XM, V, λ)
∆
= H(XM|XD, V ) −

∑
B∈B(A|D)

λBH(XB|XBc , V ), (9)

for rvs XM, V (the latter with values in some finite set V), and vectors λ in Λ(A) (resp.

Λ(A|D)). We assume throughout, without further explicit mention, that the Markov condi-

tion (4) holds and that the probability mass function (pmf) of XM is compatible with the

given DMC W , i.e.,

PV XM(v, x[1,m]) = PV X[1,k]
(v, x[1,k])W (x[k+1,m]|x[1,k]), v ∈ V , x[1,m] ∈ ×mi=1Xi. (10)

We denote by GA(XM, λ) and GA|D(XM, λ) the special cases for V = constant of (8) and

(9), respectively.

The quantities above are related to GA(Q, λ) and GA|D(Q, λ) defined in ([9], eqs.(6), (7))

for a DMC with a single input and m outputs, with Q denoting the input pmf. In order to

apply the results of [9], we consider below an auxiliary channel model with underlying DMC

W̄ : V → X1 × · · · Xm (the input alphabet V being any finite set), which is defined by a

DMC W0 : V → X1 × · · · Xk as

W̄ (x[1,m]|v)
∆
= W0(x[1,k]|v)W (x[k+1,m]|x[1,k]), v ∈ V , xM ∈ ×mi=1Xi. (11)

Note that the sets B(A|D) and Λ(A|D) corresponding to the original model (including when

D = ∅) are the same as B(A|D̄) and Λ(A|D̄) corresponding to the auxiliary model with

D̄
∆
= D ∪ {0}, where the fictitious terminal 0 depicts the input to the DMC W̄ (as also W0).

The rvs V and XM can be regarded, respectively, as the input and output of the DMC

W̄ ; in other words, they represent a source model that can be emulated by the auxiliary

channel model iff their joint pmf is of the form (10) with

PV X[1,k]
(v, x[1,k]) = PV (v)W0(x[1,k]|v), v ∈ V , x[1,k] ∈ ×ki=1Xi. (12)

This source model can be emulated by the original channel model iff the rvs Xi, i ∈ [1, k]\D

are conditionally independent given V,X[1,k]∩D. For rvs V,XM satisfying (10), (12), the

quantities in (8), (9) can be written equivalently in the notation of ([9], eqs. (6), (7)) as

GA(XM, V, λ) = GA|D̄(PV , λ), D̄
∆
= {0}, (13)
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GA|D(XM, V, λ) = GA|D̄(PV , λ), D̄
∆
= D ∪ {0}, (14)

the right sides meant for the underlying DMC W̄ . Hence by ([9], Theorem 4.1), the minimum

of GA(XM, V, λ) with respect to λ ∈ Λ(A) is the PK capacity of the source model defined by

V,XM, with privacy from terminal 0; further, maximization over PV yields the PK capacity

of the auxiliary channel model with underlying DMC W̄ . A similar statement holds for

GA|D(XM, V, λ), with privacy from the terminals in D∪{0}. Furthermore, by ([9], Theorem

4.2), for the auxiliary channel model these PK rates are achievable by protocols such that

terminal 0 transmits a deterministic sequence, and public communication takes place only

after transmission over the DMC W̄ has been completed and consists of public messages by

the terminals in [1,m] with at most one message from each terminal that is a (deterministic)

function of the DMC outputs therein. Note that as a consequence of their operational

meaning, the quantities in (13), (14) are nonnegative.

Theorem 4: For any V , and X1, . . . , Xk conditionally independent given V ,

CS(A) ≥ min
λ∈Λ(A)

GA(XM, V, λ). (15)

Similarly, for any V and X1, . . . , Xk such that Xi, i ∈ [1, k]∩Dc are conditionally independent

given (V,X[1,k]∩D),

CP (A|D) ≥ min
λ∈Λ(A|D)

GA|D(XM, V, λ). (16)

Moreover, the right sides yield the largest SK or PK rates achievable by general source

emulation using a particular choice of V,X1, . . . , Xk. These rates are achievable also with

the terminals in [1, k]∩D transmitting deterministic sequences over the DMC W , and with

a noninteractive communication protocol.

Comments: (i) The maxima of the right sides of (15), (16) with respect to the choice

of V,X1, . . . , Xk are achieved since the cardinality of the range of V can be bounded by

standard techniques.

(ii) The largest SK or PK rates achievable by simple source emulation are obtained by a

similar maximization of GA(XM, λ) or GA|D(XM, λ).

Proof: As discussed before Theorem 4, the right side of (15) is an achievable PK rate, in

14



the auxiliary channel model with underlying DMC W̄ , for the set of terminals A ⊂M with

privacy from the input terminal 0; moreover, it is achievable by a protocol of the mentioned

special kind that, in particular, has terminal 0 transmitting a deterministic sequence vn =

(v1, . . . , vn). The latter circumstance can be realized in the model with DMC W with the

input terminals simply transmitting mutually independent rvs X[1,k]t, t = 1, . . . , n, with

pmfs PX[1,k]t
= PX[1,k]|V=vt , noting that it is at this point that the conditional independence

hypothesis is used.

It follows, referring again to the preceding discussion, that the right side of (15) is an

achievable SK rate for the channel model with DMC W , by means of communication proto-

cols admitting public communication only upon completion of the DMC transmissions and

with each terminal i ∈M sending at most one public message that is a function of Xn
i alone.

To complete the proof of Theorem 4 in respect of (15), it remains to show that the DMC

input terminals i ∈ [1, k] need not send public messages, to which end it may be necessary to

change the pmfs of the input rvs Xn
i . This can be shown exactly as the analogous assertion

of ([9], Theorem 2) was proved. Consider a “good” protocol in which the terminals i ∈ [1, k]

send public messages fi = fi(X
n
i ). Proceeding as in the cited proof (replacing f0 there with

(f1, . . . , fk)), it follows that the protocol will remain “good” if the joint pmf of all n-length

channel inputs is changed to its conditional joint pmf under the condition that the values

of fi(X
n
i ), i ∈ [1, k] are equal to suitable constants. This conditioning does not affect the

independence of the inputs (although their components Xit, t = 1, . . . , n, no longer need be

independent), and it reduces the public messages fi(X
n
i ) of the input terminals i ∈ [1, k] to

be constants.

The assertion concerning (16) is proved in the same manner; this time, we define an

auxiliary channel model with the role of V assigned to (V,X[1,k]∩D). It is obvious from

the definition (9) of GA|D(XM, V, λ) that its value remains unchanged if V is replaced by

(V,X[1,k]∩D). �

Next, restricting attention to a MAC with a single output whose capacity region is

C, by the Corollary of Theorem 2 the condition (R, . . . , R) ∈ C is sufficient for R to be

an achievable SK rate for A = M. While it remains unclear whether this condition is
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necessary, the next Proposition shows that larger SK rates cannot be achieved by means of

general source emulation.

Proposition 5: For a MAC W : X1 × · · · × Xm−1 → Xm, a necessary and sufficient

condition for the achievability of SK rate R with A = M by general source emulation, is

(R, . . . , R) ∈ C.

Comment: A similar argument shows that R is achievable as an SK rate by simple source

emulation iff (R, . . . , R) belongs to a polyhedron

{
(R1, . . . , Rm−1) : Ri ≥ 0,

∑
i∈B

Ri ≤ I(XB ∧Xm|XBc\{m}), B ⊂ [1,m− 1]
}
,

where X1, . . . , Xm−1 are i.i.d. rvs and PXm|X[1,m−1]
= W . Since the capacity region C equals

the convex closure of the union of all such polyhedra, where the union itself may be non-

convex, this shows that for some MACs general source emulation can yield larger SK rates

than simple source emulation; see Example 3 in Section 6 below.

Proof: Consider general source emulation involving an auxiliary rv V and input rvs

X1, . . . Xm−1 that are conditonally independent given V , and let Xm be the corresponding

output rv. By Theorem 4, the SK rate achievable by this source emulation is

minλ∈Λ(M)GM(XM, V, λ).

Since X1, . . . , Xm−1 are conditionally independent given V , and V −◦−X[1,m−1] −◦−Xm,

the expression for GM(XM, V, λ) in (8) simplifies. Specifically,

H(XM|V ) = H(X[1,m−1]|V ) +H(Xm|X[1,m−1], V )

=
m−1∑
i=1

H(Xi|V ) +H(Xm|X[1,m−1]); (17)

for B 3 m,

H(XB|XBc , V ) = H(XB\{m}, Xm|XBc , V )

= H(XB\{m}|XBc , V ) +H(Xm|X[1,m−1], V )

=
∑

i∈B\{m}

H(Xi|V ) +H(Xm|X[1,m−1]); (18)
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and for B 63 m,

H(XB|XBc , V ) = H(XB|XBc\{m}, V )− I(XB ∧Xm|XBc\{m}, V )

=
∑
i∈B

H(Xi|V )− I(XB ∧Xm|XBc\{m}, V ). (19)

Substituting (17)-(19) in (8), and using
∑

B:B3i λB = 1 for each i ∈M, we obtain

GM(XM, V, λ) =
∑

B∈Λ(M):B 63m

λBI(XB ∧Xm|XBc\{m}, V ). (20)

For any fixed B̃ ⊂ [1,m − 1], assign λ ∈ Λ(M) defined by λB = 1
|B̃| if B = B̃ or

B =M\{i} for some i ∈ B̃, and λB = 0 otherwise. With this λ, (20) gives

GM(XM, V, λ) =
1

|B̃|
I(XB̃ ∧Xm|XB̃c\{m}, V ).

It follows that R = minλ∈Λ(M) GM(XM, V, λ) satisfies

R|B̃| ≤ I(XB̃ ∧Xm|XB̃c\{m}, V ) (21)

for every B̃ ⊂ [1,m− 1], proving the necessity part of the assertion.

For sufficiency, note that (R, . . . , R) ∈ C means that for some V and X1, . . . , Xm−1

conditionally independent given V with V −◦− X[1,m−1] −◦− Xm, the inequalities (21) are

satisfied. For these rvs, (20) and (21) give

GM(XM, V, λ) ≥
∑

B∈Λ(M):B 63m

λBR|B| ≥ R
( ∑
B∈Λ(M)

λB|B| −
∑

B∈Λ(M):B3m

λB(m− 1)
)
.

Since
∑

B∈Λ(M) λB|B| =
∑m

i=1

∑
B∈Λ(M):B3i λB = m and

∑
B∈Λ(M):B3m λB = 1, this proves

that minλ∈Λ(M)GM(XM, V, λ) ≥ R. �

5 General Upper Bounds for SK and PK Capacities

In order to state our upper bounds for CS(A) and CP (A|D), we extend the notation in (8)

and (9) above with a slight abuse of it. Specifically, for rvs XM, V , and for λ ∈ Λ(A) or

λ ∈ Λ(A|D), we denote

GA(X[1,k], V, λ)
∆
= H(X[1,k]|V ) −

∑
B∈B(A)

λBH(X[1,k]∩B|X[1,k]∩Bc , V ), (22)
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GA|D(X[1,k], V, λ)
∆
= H(X[1,k]|XD, V ) −

∑
B∈B(A|D)

λBH(X[1,k]∩B|X[1,k]∩Bc , XD, V ), (23)

and denote by GA(X[1,k], λ) and GA|D(X[1,k], λ) the special cases for V = constant of (22) and

(23), respectively. As earlier, we assume that the rvs V,XM satisfy the Markov condition

V −◦−X[1,k]−◦−X[k+1,m] and PX[k+1,m]|X[1,k]
= W . Akin to GA(XM, V, λ) and GA|D(XM, V, λ)

in (13), (14), both GA(X[1,k], V, λ) and GA|D(X[1,k], V, λ), too, are nonnegative, as shown in

Appendix B.

Theorem 6: The SK capacity CS(A) for a set of terminals A ⊂M and the PK capacity

CP (A|D) for A with privacy from a set of terminals D ⊂ Ac are bounded above, respectively,

as follows:

CS(A) ≤ sup
PV,X[1,k]

inf
λ∈Λ(A)

[
GA(XM, V, λ) − GA(X[1,k], V, λ)

]
, (24)

and for any i ∈ Dc,

CP (A|D) ≤ sup
PV,X[1,k]

inf
λ∈Λ(A|D)

[
GA|D(XM, V, λ) − GA|D(X[1,k], V, λ)

+
∑

B∈B(A|D): B 63i

λBI
(
XD ∧X[1,k]∩B|X[1,k]∩Bc , V

)]
. (25)

Corollary: If k = m− 1 and D 63 m, then

CP (A|D) ≤ sup
PV,X[1,m−1]

inf
λ∈Λ(A|D)

∑
B∈B(A|D): B 63m

λBI
(
Xm ∧XB|X[1,m−1]∩Bc , V

)
. (26)

Comments: (i) If D ⊂ [1, k], then the last term in (25) vanishes. If D ⊃ [k + 1, . . . ,m],

then the difference of the first two terms is 0.

(ii) The bound (25) is tight in the special case when no more than one DMC input is

uncompromised. Indeed, then GA|D(X[1,k], V, λ) = 0, and the last term in (25) also vanishes

– trivially when D ⊃ [1, k], and upon taking i to be the uncompromised input otherwise.

Hence, in this case (25) gives the upper bound

CP (A|D) ≤ sup
PV,X[1,k]

inf
λ∈Λ(A|D)

GA|D(XM, V, λ),

which coincides with the lower bound in Theorem 4.

(iii) The upper bound in (24) can be weakened to CS(A) ≤ supPV,X[1,k]
infλ∈Λ(A) GA(XM, V, λ).
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This weaker bound differs from the lower bound in Theorem 4 by the lack of the conditional

independence of X1, . . . , Xk given V . It remains open whether (25) can be similarly weak-

ened.

Proof: The upper bound for PK capacity in (25) is derived first. The bound in (24) for

SK capacity follows as the special case D = ∅.

The initial steps in proving (25) are identical to those in the proof of the analogous

converse part in ([9], Theorem 4.1). These steps are presented first in a summarized form

below, which then serve as a point of departure for the rest of the proof.

Suppose that the rv K(n) represents an (εn, δn)-PK with privacy from D ⊂ Ac, achievable

with randomization UM and public communication F(n), where δn = o(n) and εn → 0;

see Definition 2 and the succeeding remark. As observed in ([9], the remark preceding

Definition 3), we can suppose w.l.o.g. that F(n) = (UD, X
n
D, F̃

(n)), where F̃(n) consists of

the communication of all the terminals in Dc. Then the secrecy condition (2) is

log |K(n)| − H(K(n)|UD, Xn
D, F̃

(n)) ≤ δn.

Using ([9], Corollary of Lemma A.2 in Appendix A) with (Ui, X
n
i ) in the role of Xi, i ∈ M,

and Xn
D and F̃(n) in the roles of XD and Y , respectively, we get as in ([9], inequality (11))

that for every λ = {λB : B ∈ B(A|D)} ∈ Λ(A|D),

1

n
log |K(n)| ≤ αn

n

[{
H(UM, X

n
M|UD, Xn

D, F̃
(n))

−
∑

B∈B(A|D)

λBH(UB, X
n
B|UBc , Xn

Bc , F̃(n))
}]

+ βn (27)

where

αn → 1 and βn → 0 as n → ∞.

A main ingredient of the proof of (25) will be to show that the expression within
[
· · ·
]

above is bounded above by∑n
t=1

[ (
H(XMt|XDt) −

∑
B∈B(A|D)

λBH(XBt|XBct)
)

−
(
H(X([1,k])t|XDt) −

∑
B∈B(A|D)

λBH(X([1,k]∩B)t|X([1,k]∩Bc)t, XDt)
)

+
∑

B∈B(A|D): B 63i

λBI
(
XDt ∧X([1,k]∩B)t|X([1,k]∩Bc)t

)]
(28)
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for i ∈ Dc. Establishing the bound (28) entails a rather tedious manipulation of information

quantities, and therefore is relegated to Appendix A.

To simplify (28), a standard technique is used: Let V be an auxiliary rv distributed

uniformly on {1, . . . , n} and independent of Xn
M, and set X̃i

∆
= XiV , i ∈ M. Then∑n

t=1 H(XMt|XDt) = nH(X̃M|X̃D, V ), etc., and it holds that V −◦− X̃[1,k] −◦− X̃[k+1,m]

and PX̃[k+1,m]|X̃[1,k]
= W . Finally, omitting the tildes, we obtain for the new XM from (27),

(28) (and recalling (9), (23)) that

lim sup
n

1

n
log |K(n)| ≤ GA|D(XM, V, λ) − GA|D(X[1,k], V, λ)

+
∑

B∈B(A|D): B 63i

λBI
(
XD ∧X[1,k]∩B|X[1,k]∩Bc , V

)
(29)

for every λ = {λB : B ∈ B(A|D)} ∈ Λ(A|D) and i ∈ Dc. The claimed upper bound for PK

rates in (25) follows thereupon.

Turning to the proof of the Corollary, note first that since D ⊂ [1,m− 1], the last term

in (25) vanishes. For B ∈ B(A|D), since [1,m− 1]∩Bc ⊃ D, we have in (25), by (9), (23),

that

GA|D(XM, V, λ)−GA|D(X[1,m−1], V, λ)

=
(
H(XM|XD, V ) −

∑
B∈B(A|D)

λBH(XB|XBc , V )
)

−
(
H(X[1,m−1]|XD, V ) −

∑
B∈B(A|D)

λBH(X[1,m−1]∩B|X[1,m−1]∩Bc , V )
)

= H(Xm|X[1,m−1]) −
∑

B∈B(A|D)

λB

(
H(XB|XBc , V )−H(X[1,m−1]∩B|X[1,m−1]∩Bc , V )

)
= H(Xm|X[1,m−1]) −

∑
B∈B(A|D)

λB

(
H(X[1,m−1]∩B|XBc , V ) +H(XB\[1,m−1]|X[1,m−1]∩B, XBc , V )

−H(X[1,m−1]∩B|X[1,m−1]∩Bc , V )
)
. (30)

Now, for m ∈ B, in the summand in the right side of (30), the expression within
(
· · ·
)

equals

H(X[1,m−1]∩B|XBc , V ) +H(Xm|X[1,m−1])−H(X[1,m−1]∩B|XBc , V ) = H(Xm|X[1,m−1]), (31)
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while for m /∈ B, it equals

H(X[1,m−1]∩B|X[1,m−1]∩Bc , Xm, V )+0−H(X[1,m−1]∩B|X[1,m−1]∩Bc , V ) = I(Xm∧XB|X[1,m−1]∩Bc , V ).

(32)

By (31), (32) and using
∑

B∈B(A|D): B3m λB = 1, it follows that the right side of (30)

equals
∑

B∈B(A|D): B 63m λBI(Xm ∧XB|X[1,m−1]∩Bc , V ), thereby leading to (26). �

6 Examples

Example 1: Consider the DMC W : X1 ×X2 → X3 with X1 = X2 = X3 = {0, 1} and

W (x3|x1, x2) = 1 (x3 = x1 + x2 mod 2) ,

where 1(·) denotes the indicator function. First, note that its capacity region is

C = {(R1, R2) : 0 ≤ R1 +R2 ≤ 1}.

Consider SK generation for A =M = {1, 2, 3}. The lower bound for CS({1, 2, 3}) provided

by Theorem 2 is equal to 0.5 since (R,R) belongs to the capacity region C of the MAC W

iff R ≤ 0.5. This SK rate is also achieved by simple source emulation; see the Comment

following Proposition 5.

The achievability of an SK rate of 0.5 can be seen also separately by the following explicit

scheme which generates 1 bit of perfect SK (i.e., (ε, δ)-SK with ε = δ = 0) for A by means

of independent transmissions over the DMC by the input terminals using n = 2 symbols

followed by public communication only by the output terminal. Terminal 1 transmits X11 = 0

or 1 w.p. (0.5, 0.5) and X12 = 0, while terminal 2 transmits X21 = 0 and X22 = 0 or

1 w.p. (0.5, 0.5), independently of (X11, X12). Terminal 3 then sends the public message

f3 = f3(X31, X32) = X31 + X32 mod 2. Clearly, all the terminals can perfectly recover

K = X11, say, from any X2
i and the communication F = f3 while satisfying the secrecy

condition

21



s(K; F) = 1−H(X11|X31 +X32)

= 1−H(X11|X11 +X22)

= 1−H(X11) = 0.

Thus, K = X11 is a perfect SK for A = {1, 2, 3} of rate 0.5.

Next, for the upper bound, apply the Corollary of Theorem 6 with D = ∅. Then, the

choice λ{1} = λ{2} = λ{3} = 0, λ{12} = λ{13} = λ{23} = 0.5 yields the sum in (26) as

0.5H(X3|V ). It follows that CS({1, 2, 3}) ≤ 0.5. Thus, CS({1, 2, 3}) = 0.5.

Furthermore, by Theorem 2, the PK capacity region CP ({1, 3}, {2, 3}) contains C. In

fact, CP ({1, 3}, {2, 3}) = C, which can be seen as follows. Suppose that CP ({1, 3}, {2, 3})

contains a rate pair outside C. By the convexity of the PK region, it contains a rate pair

(R,R) with R > 0.5. Then, again by Theorem 2, R > 0.5 would be an achievable SK rate

for A = {1, 2, 3}, which contradicts CS({1, 2, 3}) = 0.5. �

Example 2: Consider the DMC W : X1×X2 → X3 with X1 = X2 = {0, 1}, X3 = {0, 1, 2}

and

W (x3|x1, x2) = 1 (x3 = x1 + x2) .

Its capacity region is {(R1, R2) : 0 ≤ R1, R2 ≤ 1, R1 +R2 ≤ 1.5}. The Corollary of Theorem

2 yields that CS({1, 2, 3}) ≥ 0.75. By the Comment following Proposition 5, the SK rate

of 0.75 is achievable also by simple source emulation. On the other hand, the Corollary of

Theorem 6 gives the upper bound CS({1, 2, 3}) ≤ 0.5 log 3 = 0.78. The exact value of the

SK capacity is unknown.

Next, consider PK generation for A = {1, 2} with privacy from D = {3}. Noting in (16)

that the only permissible choice of λ ∈ Λ({1, 2}|{3}) is λ{1} = λ{2} = 1, we get that the

right side of (16), with X1, X2 conditionally independent of V , equals H(X1|V )+H(X2|V )−

H(X3|V ). Thus, by Theorem 4, it follows that

CP ({1, 2}|{3}) ≥ max
PV X1X2

=PV PX1|V PX2|V
H(X1|V ) +H(X2|V )−H(X3|V )

= max
PX1X2

=PX1
PX2

H(X1) +H(X2)−H(X3)

= 0.5,
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with the previous maximum attained by PX1(1) = PX2(1) = 0.5. Thus, the largest PK rate

achievable by general source emulation is 0.5. The exact value of the PK capacity remains

unknown, for Theorem 6 yields only the trivial upper bound 1. �

Example 3: Consider the DMC W : X1 ×X2 → X3 with

W (0|x1, x2) = W (1|x1, x2) = 0.5, if x1 = x2 = 1,

W (x3|x1, x2) = 1 (x3 = x1 + x2) otherwise.

Its capacity region is the same as that of the MAC in Example 1. The Corollary of Theorem

2 yields the lower bound CS({1, 2, 3}) ≥ 0.5. The same scheme for SK generation for

A = {1, 2, 3} as in Example 1 attains an SK rate of 0.5. By Proposition 5, the SK rate

of 0.5 is achievable also by general source emulation. However, by the Comment following

Proposition 5, it is not achievable by simple source emulation.

By the Corollary of Theorem 4, we obtain as in Example 1 that CS({1, 2, 3}) ≤ 0.5, so

that CS({1, 2, 3}) = 0.5. �

Example 4: Consider the DMC W : X1 × · · · × Xk → Xk+1 × · · · × Xm with X1 = · · · =

Xm = {0, 1} and

W (xk+1, . . . , xm|x1, . . . , xk)

= 2−(m−k−1)
1
(
xm =

m−1∑
i=1

xi mod 2
)
,

i.e., the DMC outputs at terminals k + 1, . . . ,m − 1 are mutually independent rvs, each

distributed uniformly on {0, 1} regardless of the inputs, and the output at terminal m is the

modulo 2 sum of the inputs and the remaining outputs. For SK generation for any A ⊂M

with |A| ≥ 2, the lower bound provided by Theorem 4 yields CS(A) ≥ 1
|A|−1

; this SK rate of

1
|A|−1

is achieved by simple source emulation. Specifically, with the input terminals in [1, k]

transmitting i.i.d. repetitions of a k-tuple of mutually independent rvs X1, . . . , Xk, each

distributed uniformly on {0, 1}, the DMC W generates i.i.d. repetitions of an m-tuple of rvs

X1, . . . , Xm, where X1, . . . , Xm−1 are mutually independent with each distributed uniformly

on {0, 1} and Xm is the modulo 2 sum of X1, . . . , Xm−1. In this emulated source model,

the largest achievable SK rate for A equals 1
|A|−1

; see ([8], Example 1). Furthermore, in the
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explicit scheme provided therein, the key generated for A satisfies the secrecy condition (2)

for D = Ac with δ = 0, thereby constituting a perfect PK for A with privacy from D = Ac

in addition to being a perfect SK for A. Thus, we have CP (A|Ac) ≥ 1
|A|−1

, too.

For the special case A = M, the achievability of an SK rate of 1
m−1

can be seen also

separately by the following explicit scheme which generates 1 bit of perfect SK for M by

means of independent transmissions over the DMC by the input terminals using n = m− 1

symbols followed by public communication only by the output terminals but not by the

input terminals. Specifically, the input terminal i ∈ [1, k] transmits over the DMC a sequence

Xi1, . . . , Xin with Xii being {0, 1}-valued w.p. (0.5, 0.5) and Xij = 0, j 6= i; all such sequences

are mutually independent. The output terminal i ∈ [k + 1,m − 1] sends a public message

fi = fi(X
n
i ) which is the block Xn

i = (Xi1, . . . , Xin) excluding Xii, while the output terminal

m sends the public message

fm(Xn
m) =

(
Xm1 +Xm2, . . . , Xm1 +Xmn

)
,

where the additions are modulo 2. It is easily seen that K = X11, say, is perfectly recoverable

from Xn
i and the public communication F = (fk+1, . . . , fm). Furthermore, K satisfies the

secrecy condition (1) with δ = 0, and so constitutes a perfect SK of rate 1
m−1

.

Next, in the upper bound for CS(A) in Theorem 6, we have from (24) that for any

λ ∈ Λ(A),

GA(XM, V, λ) − GA(X[1,k], V, λ)

24



=
[
H(XM|V )−

∑
B∈B(A)

λBH(XB|XBc , V )
]

−
[
H(X[1,k]|V )−

∑
B∈B(A)

λBH(X[1,k]∩B|X[1,k]∩Bc , V )
]

=
[
H(XM|V )−

∑
B∈B(A)

λB
(
H(XM|V )−H(XBc |V )

)]
−
[
H(X[1,k]|V )−

∑
B∈B(A)

λB
(
H(X[1,k]|V )−H(X[1,k]∩Bc|V )

)]
= (1−

∑
B∈B(A)

λB)
(
H(XM|V )−H(X[1,k]|V )

)
+
∑

B∈B(A)

λB
(
H(XBc |V )−H(X[1,k]∩Bc |V )

)
= (1−

∑
B∈B(A)

λB)H(X[k+1,m]|X[1,k]) +
∑

B∈B(A)

λBH(XBc\[1,k]|X[1,k]∩Bc , V ). (33)

Fix i0 ∈ A, and consider the choice λB = 1
|A|−1

for B = A\{i0} or B =M\{i} for some i ∈

A\{i0}, and λB = 0 else. For this choice of λ ∈ Λ(A), and noting that H(X[k+1,m]|X[1,k]) =

m− k − 1, (33) gives

GA(XM, V, λ) − GA(X[1,k], V, λ)

=
(

1− |A|
|A| − 1

)
(m− k − 1)

+
1

|A| − 1

[
H(X(Ac∪{i0})\[1,k]|X[1,k]∩(Ac∪{i0}), V ) +

∑
i∈A\{i0}

H(X{i}\[1,k]|X[1,k]∩{i}, V )
]

≤ −m− k − 1

|A| − 1
+

1

|A| − 1

[
H(X(Ac∪{i0})\[1,k]) +

∑
i∈A\{i0}

H(X{i}\[1,k])
]

≤ −m− k − 1

|A| − 1
+

1

|A| − 1

m∑
i=k+1

H(Xi)

≤ −m− k − 1

|A| − 1
+

m− k
|A| − 1

=
1

|A| − 1
,

noting in the first inequality above that the summand in the last term equals 0 if i /∈ [k+1,m].

Thus, CS(A) = 1
|A|−1

, and, in particular, CS(M) = 1
m−1

. Also, CP (A|Ac) = 1
|A|−1

, as a

PK for A with privacy from any D ⊂ Ac is also an SK for A. Observe that Example 1 above

is a special case of the present example with m = 3, k = 2 and A =M. �
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7 Discussion

We have considered secrecy generation for multiaccess channel models whose resources con-

sist of facilities for secure noisy channel transmission from the input to the output terminals,

public noiseless communication among all the terminals, and (mutually independent) ran-

domization at the terminals. Our main results are single-letter lower and upper bounds for

SK and PK capacities which agree in special cases but not in general. The lower bounds

are obtained as the largest SK or PK rates achievable by general source emulation, while

the upper bounds are derived by techniques developed in our earlier work [9]. However, in

general, conclusive single-letter characterizations for the secrecy capacities remain elusive.

The general channel model considered here appears more defiant than its special case with

a single input for which single-letter characterizations of SK and PK capacities were found

in [9]. Indeed, the latter capacities were achieved by simple source emulation; the converse

proofs bore the main technical difficulty.

We show for a MAC model with a single output, in which all the terminals seek to share

secrecy, that a necessary and sufficient condition for R to be an achievable SK rate by general

source emulation is that (R, . . . , R) must lie in the capacity region of the MAC; thus, the

maximum SK rate achievable by source emulation is the largest such R in the MAC capacity

region. A main open question for this special model, as well as for the general channel

model, is whether secrecy rates can be achieved beyond those attainable by general source

emulation, by resorting to the complex transmission and communication protocols described

in Section 2. We conjecture the answer to be in the affirmative, recalling the use of only

simple noninteractive protocols in our achievability proofs and noting that feedback can

increase the capacity region of a MAC with the use of sophisticated transmission protocols.

However, a direct connection is not apparent between secrecy rates and the feedback capacity

region.
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Appendix A

In order to complete the proof of the upper bound (25) in Theorem 4, we show in (27) for

every λ = {λB : B ∈ B(A|D)} ∈ Λ(A|D) and i ∈ Dc that

H(UM, X
n
M|UD, Xn

D, F̃
(n)) −

∑
B∈B(A|D)

λBH(UB, X
n
B|UBc , Xn

Bc , F̃(n))

≤
n∑
t=1

[(
H(XMt|XDt) −

∑
B∈B(A|D)

λBH(XBt|XBct)
)

−
(
H(X([1,k])t|XDt) −

∑
B∈B(A|D)

λBH(X([1,k]∩B)t|X([1,k]∩Bc)t, XDt)
)

+
∑

B∈B(A|D): B 63i

λBI
(
XDt ∧X([1,k]∩D)t|X([1,k]∩Bc)t

)]
, (A1)

and observe that the right side above equals the expression in the claimed bound in (28).

As in ([9], Appendix B), the left side of (A1) equals

(1− λsum)H(UM, X
n
M)−H(UD, X

n
D, F̃

(n)) +
∑

B∈B(A|D)

λBH(UBc , Xn
Bc , F̃(n)) (A2)

where

λsum =
∑

B∈B(A|D)

λB ≥ 1. (A3)

Considering the separate terms in (A2), the counterparts of (B4), (B5) and (B7) in ([9],

Appendix B) are:

H(UM, X
n
M) = H(UM) +

n∑
t=1

H(XMt|UM, X t−1
M )

= H(UM) +
n∑
t=1

H(XMt|X([1,k])t) (A4)

since X([1,k])t is a function of (U[1,k], F
t−1) = (U[1,k], UD, X

t−1
D , F̃ t−1) and so is determined by

(UM, X
t−1
M );

H(UD, X
n
D, F̃

(n)) = H(UD) +
n∑
t=1

H(XDt|UD, X t−1
D , F̃ t−1)

+
n∑
t=1

H(F̃t|UD, X t
D, F̃

t−1); (A5)
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and

H(UBc , Xn
Bc , F̃(n)) = H(UBc) +

n∑
t=1

H(XBct|UBc , X t−1
Bc , F̃ t−1) +

n∑
t=1

H(F̃t|UBc , X t
Bc , F̃ t−1).

(A6)

By (A2)-(A6), the left side of (A1) decomposes as E1 + E2 + E3 where

E1 = (1− λsum)H(UM)−H(UD) +
∑

B∈B(A|D)

λBH(UBc)

and

E3 =
n∑
t=1

[
−H(F̃t|UD, X t

D, F̃
t−1) +

∑
B∈B(A|D)

λBH(F̃t|UBc , X t
Bc , F̃ t−1)

]
are the same as in ([9], Appendix B), while

E2 =
n∑
t=1

[
(1− λsum)H(XMt|X([1,k])t)−H(XDt|UD, X t−1

D , F̃ t−1)

+
∑

B∈B(A|D)

λBH(XBct|UBc , X t−1
Bc , F̃ t−1)

]
. (A7)

By ([9], Appendix B), E1 = 0 and E3 ≤ 0. Turning to E2, we claim that for each 1 ≤ t ≤ n,

the tth term of the sum in E2, denoted by E2t, satisfies

E2t ≤
[(
H(XMt|XDt)−

∑
B∈B(A|D)

λBH(XBt|XBct)
)

−
(
H(X([1,k])t|XDt)−

∑
B∈B(A|D)

λBH(X([1,k]∩B)t|X([1,k])∩Bc)t, XDt)
)

+
∑

B∈B(A|D): B 63i

λBI
(
XDt ∧X([1,k]∩B)t|X([1,k]∩Bc)t

)]
, (A8)

proving which will establish (A1).

For every i ∈ Dc, the first term of E2t in (A7) is

(1− λsum)H(XMt|X([1,k])t) = −
∑

B∈B(A|D): B 63i

λBH(XMt|X([1,k])t) (A9)

while the third term is∑
B∈B(A|D)

λBH(XBct|UBc , X t−1
Bc , F̃ t−1)
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=
∑

B∈B(A|D)

λBH(XBct|X([1,k]∩Bc)t, UBc , X t−1
Bc , F̃ t−1)

=
∑

B∈B(A|D): B 63i

λBH(XBct|X([1,k]∩Bc)t, UBc , X t−1
Bc , F̃ t−1)

+
∑

B∈B(A|D): B3i

λBH(XBct|X([1,k]∩Bc)t, UBc , X t−1
Bc , F̃ t−1)

≤
∑

B∈B(A|D): B 63i

λBH
(
X(Bc\[1,k])t|X([1,k]∩Bc)t

)
+

∑
B∈B(A|D): B3i

λBH(XBct|UBc , X t−1
Bc , F̃ t−1), (A10)

where the first equality holds since X([1,k]∩Bc)t is a function of

(U[1,k]∩Bc , F t−1) = (U[1,k]∩Bc , UD, X
t−1
D , F̃ t−1) and so is determined by (UBc , X t−1

Bc , F̃ t−1). Fur-

ther, as in ([9], p. 2451, column 2, line 18 onward), since B ∈ B(A|D) implies Bc ⊃ D,

H(XBct|UBc , X t−1
Bc , F̃ t−1)−H(XDt|UD, X t−1

D , F̃ t−1)

≤ H(XBct|UBc , X t−1
Bc , F̃ t−1)−H(XDt|UBc , X t−1

Bc , F̃ t−1)

= H(XBct|XDt, UBc , X t−1
Bc , F̃ t−1)

= H(XBct|XDt)− I(XBct ∧ UBc , X t−1
Bc , F̃ t−1|XDt),

so that in the right side of (A10),∑
B∈B(A|D): B3i

λBH(XBct|UBc , X t−1
Bc , F̃ t−1)

≤
∑

B∈B(A|D): B3i

λB

[
H(XDt|UD, X t−1

D , F̃ t−1)+H(XBct)−H(XDt)−I(XBct∧UBc , X t−1
Bc , F̃ t−1|XDt)

]
.

(A11)

Combining (A9), (A10), (A11), and recalling that
∑

B∈B(A|D): i∈B λB = 1 for i ∈ Dc, we

get that E2t is bounded above as

E2t ≤ −
∑

B∈B(A|D): B 63i

λB

[
H(XMt|X([1,k])t)−H

(
X(Bc\[1,k])t|X([1,k]∩Bc)t

)]
+

∑
B∈B(A|D): B3i

λB

[
H(XBct)−H(XDt)− I(XBct ∧ UBc , X t−1

Bc , F̃ t−1|XDt)
]
.(A12)

Now, we observe in the right side of (A12) that the summands in the first and second

sums, respectively, are

H(XMt)−H(X[1,k]t)−H(XBct) +H
(
X([1,k]∩Bc)t

)
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= H(XBt|XBct)−H
(
X([1,k]∩B)t|X([1,k]∩Bc)t

)
= H(XBt|XBct)−H

(
X([1,k]∩B)t|X([1,k]∩Bc)t, XDt

)
−I
(
XDt ∧X([1,k]∩B)t|X([1,k]∩Bc)t

)
(A13)

and

H(XBct)−H(XDt)− I
(
XBct ∧X([1,k]∩Bc)t, UBc , X t−1

Bc , F̃ t−1|XDt

)
≤ H(XBct)−H(XDt)− I

(
XBct ∧X([1,k]∩Bc)t|XDt

)
= H(XBct)−H(XDt)−H(X([1,k]∩Bc)t|XDt)

= H(XMt)−H(XBt|XBct)−H(XDt)−H(X([1,k])t|XDt)

+H(X([1,k]∩B)t|X([1,k]∩Bc)t, XDt), (A14)

where the insertion of X([1,k]∩Bc)t in the first expression in (A14) is permissible for the reason

in the passage following (A10).

Finally, from (A12), (A13) and (A14), we get that for every i ∈ Dc,

E2t ≤ −
∑

B∈B(A|D): B 63i

λB

[
H(XBt|XBct)−H(X([1,k]∩B)t|X([1,k])∩Bc)t, XDt)

−I
(
XDt ∧X([1,k]∩B)t|X([1,k]∩Bc)t

)]
+

∑
B∈B(A|D): B3i

λB

[
H(XMt)−H(XBt|XBct)−H(XDt)

−H(X([1,k])t|XDt) +H(X([1,k]∩B)t|X([1,k])∩Bc)t, XDt)
]

=
[(
H(XMt|XDt)−

∑
B∈B(A|D)

λBH(XBt|XBct)
)

−
(
H(X([1,k])t|XDt)−

∑
B∈B(A|D)

λBH(X([1,k]∩B)t|X([1,k])∩Bc)t, XDt)
)

+
∑

B∈B(A|D): B 63i

λBI
(
XDt ∧X([1,k]∩B)t|X([1,k]∩Bc)t

)]
,

which is (A8). �
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Appendix B

The proof of the nonnegativity of (23) relies on the following technical lemma; that of (22)

follows with D = ∅.

Lemma B: Let L = {i1, . . . , il} ⊂ M, i1 < · · · < il, and D ⊂ M be arbitrary sets

with L\D 6= ∅. For rvs XM, Y , and for every collection λ = {λB : B ⊂ Dc} of weights

0 ≤ λB ≤ 1 satisfying ∑
B⊂Dc: B3i

λB = 1 for all i ∈ L\D, (B1)

it holds that ∑
B⊂Dc

λBH(XL∩B|XL∩Bc , Y ) ≤ H(XL\D|Y ). (B2)

Comment: Lemma B is a special case of Lemma B1 in [9] and also of Theorem 1 in [14].

Proof: We have∑
B⊂Dc

λBH(XL∩B|XL∩Bc , Y )

=
∑
B⊂Dc

λB
∑

j:ij∈L∩B

H(Xij |X{i1,...,ij−1}∩B, XL∩Bc , Y )

≤
∑
B⊂Dc

∑
j:ij∈L∩B

λBH(Xij |X{i1,...,ij−1}, Y )

=
∑

j:ij∈L\D

∑
B⊂Dc:B3ij

λBH(Xij |X{i1,...,ij−1}, Y )

=
∑

j:ij∈L\D

H(Xij |X{i1,...,ij−1}, Y ), by (B1)

≤
∑

j:ij∈L\D

H(Xij |X{i1,...,ij−1}\D, Y )

= H(XL\D|Y ).

�

The claimed nonnegativity of (23) follows upon taking L = X[1,k] and Y = (XD, V ) in

Lemma B. This Lemma also provides a formal proof of the nonnegativity of (8), (9), with

L = XM.
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