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Secrecy Capacities for Multiterminal Channel Models
Imre Csiszár, Fellow, IEEE, and Prakash Narayan, Fellow, IEEE

Abstract—Shannon-theoretic secret key generation by several
parties is considered for models in which a secure noisy channel
with one input terminal and multiple output terminals and a
public noiseless channel of unlimited capacity are available for
accomplishing this goal. The secret key is generated for a set of
terminals of the noisy channel, with the remaining terminals (if
any) cooperating in this task through their public communication.
Single-letter characterizations of secrecy capacities are obtained
for models in which secrecy is required from an eavesdropper that
observes only the public communication and perhaps also a set of
terminals disjoint from . These capacities are shown to be achiev-
able with noninteractive public communication, the channel input
terminal sending no public message and each output terminal
sending at most one public message, not using randomization.
Moreover, when the input terminal belongs to the set , it can
generate the secret key at the outset and transmit it over the noisy
channel, suitably encoded, whereupon the output terminals in
securely recover this key using public communication as above.
For models in which the eavesdropper also possesses side infor-
mation that is not available to any of the terminals cooperating in
secrecy generation, an upper bound for the secrecy capacity and a
sufficient condition for its tightness are given.

Index Terms—Multiple source, multiterminal channel, private
key, secrecy capacity, secret key, wiretap side information.

I. INTRODUCTION

I T is now well recognized that separate terminals, with the
means to transact over a secure noisy channel as well as a

public noiseless channel, might devise a secret key more effec-
tively than by using the secure channel alone. A secret key, in the
Shannon-theoretic sense, is common randomness of near-uni-
form distribution regarding which an eavesdropper, which ob-
serves the public communication and perhaps also possesses
additional observations available or unavailable to the termi-
nals engaged in secrecy generation, can glean only a negligible
amount of information.

The first Shannon-theoretic model for generating a secret key
over a noisy channel was Wyner’s wiretap channel [18], gen-
eralized by Csiszár and Körner [4]. This model did not allow
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for public communication, and secret key generation was tanta-
mount to secure transmission over the noisy channel, when the
eavesdropper had access to wiretap side information. The fact
that secrecy generation could be enhanced by public communi-
cation was first illustrated by Maurer [12]. Models for secrecy
generation which entailed two terminals communicating over
a public noiseless channel, were examined in detail by Maurer
[13] and Ahlswede and Csiszár [1]. These models involve ei-
ther a discrete memoryless multiple source (DMMS) with two
components accessible to one terminal each, or a discrete mem-
oryless channel (DMC) with one input terminal and one output
terminal. In both types of models, an additional “wiretapped”
terminal may or may not be present. The sumptuous literature on
such models includes Maurer [14], Bennett, Brassard, Crépeau,
and Maurer [2], Csiszár [3], Maurer and Wolf [15], [16], Csiszár
and Narayan [7], and Renner and Wolf [17]. A single-letter char-
acterization of the secrecy capacity—the largest rate at which a
secret key can be generated—is known in special cases, e.g.,
when a wiretapped terminal is absent or when the wiretapped
terminal reveals itself to the parties generating secrecy.

In an earlier paper [7], we have studied secrecy generation
for a multiterminal source model where each participating ter-
minal had access to one component of a DMMS, which was
followed by public noiseless communication. To our knowl-
edge, multiterminal channel models for generating secrecy have
not been studied heretofore. In this paper, we examine channel
models for secret key generation which involve an underlying
DMC with a single input and outputs. Terminal gov-
erns the input and terminals observe the corresponding
outputs. Following each symbol transmission over the DMC,
communication over a public noiseless channel of unlimited ca-
pacity is allowed between all the terminals, which may be inter-
active and which is observed by all the terminals.1 The goal is
to generate secret common randomness shared by a given set

of terminals at the largest rate possible.
Thus, the resulting key must be accessible to every terminal in

. It need not be accessible to the terminals not in , but nor
is it required to be concealed from them, with the possible ex-
ception of a set of terminals which are “wiretapped” by the
eavesdropper (where ). The DMC input terminal
may or may not belong to the set or .

Our emphasis is on models where all the terminals cooperate,
including those that are wiretapped (if ), in generating a
secret key for the terminals in , with secrecy being required
from the eavesdropper which has access to only the public com-
munication and the information available to the wiretapped ter-
minals in .

1For ease of distinction between the use of the DMC and the use of the public
channel, hereafter the former will be termed “transmission” while the latter will
be referred to as “communication.”
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A situation that is much more difficult to analyze but is prac-
tically important, arises when the eavesdropper has access to
additional side information. A model for this situation assumes
that the underlying DMC also has an additional output terminal
that is wiretapped by the eavesdropper, whereas it is not acces-
sible to any of the terminals cooperating in secrecy generation.
This model will be referred to as the model with wiretap side in-
formation (WSI). For this model, unlike for that described ear-
lier, we have only partial results. For the analogous problem of
source models with WSI, an upper bound for secrecy capacity
was given in [7], which easily extends to channel models. A suf-
ficient condition for the tightness of this bound had also been
given in [7], regrettably with a flawed proof; it remains an open
question whether the condition indeed suffices. Here we shall
present a more restrictive sufficiency condition for both source
and channel models.

It should be mentioned that all the models considered in this
paper assume the eavesdropper to be passive, i.e., unable to
tamper with the communication of the legitimate terminals.

One possible operational strategy in a channel model as
above is for terminal to transmit an independent and iden-
tically distributed (i.i.d.) sequence of random variables (rvs)
over the DMC, thereby emulating a source model. The main
technical result of this paper is that for channel models with
no WSI, the best possible secrecy rate can always be achieved
in this manner provided that randomization is allowed at ter-
minal (Theorem 4.1). This theorem includes a single-letter
characterization of the secrecy capacity in question, obtained
from a dual representation of the corresponding capacity of the
source model that was determined in [7]. It is expressed in two
equivalent forms as a max-min and as a min-max, with the latter
being apt for a proof of optimality. This proof uses familiar
techniques from Shannon theory, but it is difficult. In particular,
it takes recourse to two entropy inequalities (Lemmas A.2
and B.1 in Appendices A and B) that may be of independent
interest.

In order to generate secrecy at an optimal rate by emulating
a source model as above, in general it is not adequate for
terminal to merely transmit over the DMC, and it has
to communicate over the public channel as well. We show,
however, that a secret key can be generated at an optimal
rate also in such a manner that terminal sends no public
message, each of the other terminals sends at most one public
message (not using randomization) and that after transmission
over the DMC has been completed. If , then no rate
optimality is lost if the secret key is generated at the outset
by the input terminal and then transmitted over the DMC,
whereupon the output terminals in recover it securely with
the help of public communication as above (Theorem 4.2).

The case models situations when the input terminal
transmits over the DMC with the objective of enabling the re-
ceiving terminals to generate common randomness (shared by
some or all of them) which remains concealed even from it-
self. We show that in this case, there is no need for random-
ization at terminal either. Moreover, the secrecy capacity for
any channel model with no WSI, subject to the constraint that
no randomization is allowed at terminal , coincides with the se-
crecy capacity for the modified model obtained upon replacing

by whenever (Theorem 4.3); the secrecy ca-
pacity under this constraint is trivially zero if .

The paper is organized as follows. Section II contains the pre-
liminaries. In Section III, we briefly recount relevant prior re-
sults for source models from [7], and present a new result. In
Section IV, we present our main results on secrecy capacities
for channel models with no WSI, including necessary and suffi-
cient conditions for positivity. Section V contains partial results
on source as well as channel models with WSI. We close with a
discussion in Section VI.

II. PRELIMINARIES

In this work, we consider channel models of the following
kind. Terminal , with finite alphabet , is connected to termi-
nals , with finite alphabets , respectively,
by a DMC . Terminal governs the
input of the DMC over which it transmits a sequence of length

, while terminals observe the corresponding output
sequences of length . In between consecutive symbol trans-
missions over the DMC, the terminals in
are allowed to communicate over a public noiseless channel,
possibly in several rounds; in any transmission or communica-
tion by a terminal, randomization may or may not be permitted.
When considering models with WSI, the underlying DMC will
be taken to be , the additional
terminal not participating in the public communication but
feeding side information to the eavesdropper.

A formal description is provided next. All rvs are assumed
to take values in finite sets, even if not stated explicitly. The
range of an rv denoted by an uppercase letter, will be given
by the corresponding script capital unless stated otherwise. The
cardinality of a finite set is denoted by . Logarithms are
with respect to the base .

When randomization is permitted at terminal ,
we shall assume that it generates at the outset an rv ; the
rvs are mutually independent. When such
randomization is forbidden, we take a constant with prob-
ability . Terminal transmits symbols ,
over the DMC at time instants ,
and every terminal observes (instantaneously)
the corresponding output symbols ; in a
model with WSI, also the terminal observes the output
symbols . In addition, communication among
the terminals in over the public channel occurs—pos-
sibly interactively—during the time intervals , for

, and immediately following , which here-
after will be referred to simply as the intervals .
The public communication of all the terminals in interval is
depicted collectively as , and we denote .

In general, terminal determines the th input of
the DMC as a function of for , and of

for . Also, the communi-
cation of terminal in the interval is allowed to depend
on and the symbols , previously generated
at the outset, or observed, by terminal , and on all previous
communication. Formally, assuming without any loss of gener-
ality that the communication of the terminals in in interval
takes place sequentially in rounds ( being arbitrary, possibly
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depending on ), this communication comprises a sequence
of messages

as in Definition 1 below. To be exact, is defined as in
Definition 1, with the role of the initial knowledge of ter-
minal being played by , the knowledge of ter-
minal at the beginning of interval . Here, is shorthand for

. Also, we use the notation ,
and for sets

and .

Definition 1: Given rvs , , interactive communica-
tion of the terminals in , with terminal possessing
initial knowledge , is a sequence

where , the message sent in round by terminal , is a func-
tion of and of the prior communication

or

While the description above admits complex transmission
and communication protocols, it will transpire that nonin-
teractive communication suffices for our purposes with each
terminal sending one public message
upon completion of the transmissions over the DMC, and
terminal sending no public message at all; in this case

.
The following concepts introduced in [7] will also be used.

Given , a rv is -recoverable from if
for some function of . For rvs and ,

to be interpreted as representing a secret key and the eaves-
dropper’s knowledge, respectively, the information-theoretic se-
curity index is

Smallness of this security index is tantamount jointly to a nearly
uniform distribution for (i.e., is small) and to
the near independence of and (i.e., the mutual information

is close to ).

Definition 2: Given any set of size , a rv
constitutes an -secret key ( -SK) for the set of termi-
nals , achievable with uses of the DMC , randomization

, and public communication , if is -recoverable from
for each and, in addition, it satisfies the se-

crecy condition

(1)

An -SK as above is called an -private key ( -PK)
for the terminals , private from the set of terminals
with , if it satisfies the stronger secrecy condition

(2)

By definition, an -SK is recoverable at the terminals in
, and is nearly uniformly distributed and effectively concealed

from an eavesdropper with access to the public communication
; it need not be concealed from the terminals in .

On the other hand, an -PK is effectively concealed from an
eavesdropper with access—in addition to the public communi-
cation —also to a set of “wiretapped” terminals; the latter,
however, do cooperate in the secrecy generation through their
public communication. This -PK need not be concealed
from the terminals in .

Remark: The security index in (2) is clearly equal to
where denotes the public communica-

tion of the terminals in . In turn, the latter security index
equals for the communication defined by letting
each terminal send the message in the interval

, and in the intervals , with the com-
munication of the terminals in unchanged. Hence, when
considering a PK, it can be assumed without loss of generality
(w.l.o.g.) that the terminals in reveal, as above, all the infor-
mation in their possession (which, anyway, is accessible to the
eavesdropper). This assumption will be made usually without
explicit mention. Then the secrecy condition (2) reduces to (1),
rendering the latter a proper secrecy condition also for a PK.

Definition 3: A number is an achievable SK rate for a set of
terminals if there exist -SKs achievable
for with uses of the DMC , suitable randomization ,
and public communication , such that

and as (3)

The largest achievable SK rate for is the SK-capacity .
Achievable PK rates and PK capacity are defined
similarly.

Remark: The definitions above are analogous to those for the
source models in [7], with the slight difference that there the
roles of both and had been played by the same . The formal
modification here is convenient when comparing the “strong”
secrecy concept [14], [2] adopted above with the earlier “weak”
one [13], [1] which only requires that , while
still decays to . Note that our converse proofs stand under the
weaker requirement, while the achievability results hold with
both and decaying to exponentially rapidly.

Definitions 2 and 3 are for models without WSI, the brunt of
this paper. For models with WSI, the only modification required
in these definitions is to strengthen the secrecy conditions (1)
and (2) to and ,
respectively, where denotes the DMC output sequence at
the additional output terminal that is observed by the eaves-
dropper.

An obvious lower bound for , of course, is the capacity
of the compound DMC (cf. e.g., [5]) consisting of the family of
DMCs with

(4)
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The capacity of this compound DMC, which is equal to
, is always an achievable SK rate

for the set of terminals . Terminal simply forms the
SK as a randomly chosen codeword from a capacity-achieving
codebook for the compound DMC, which it then transmits
over the DMC for reliable decoding by the terminals in

; no public communication is used. In general, public
communication between the terminals can serve to improve
achievable SK rate, as seen in the following example.

Example 1: Consider the DMC where
and

where denotes the indicator function. Here, terminal
(resp., terminal ) observes a DMC output symbol which is
uniform on regardless of the input, while terminal
(resp., terminal ) observes the binary sum of the input and the
other output.

Consider first SK generation for .
The lower bound for provided by the capacity
of the compound DMC is clearly equal to since ,
given by (4) are binary symmetric channels with crossover
probability . However, as seen below, 1 bit of perfect
SK (i.e., -SK with ) for the terminals in

can be achieved with transmissions over
the DMC followed by public messages sent by termi-
nals and . Terminal transmits as or

with probabilities . Terminals and , respectively,
send public messages and

. Clearly, all
the terminals can perfectly recover , say, from any

and the communication while satisfying the
secrecy condition (1)

Thus, is a perfect SK for the terminals , of rate
. The results of the paper will show that this achievable SK

rate cannot be bettered, i.e., .
Next, consider SK generation for and PK gen-

eration for with privacy from . It is easy
to see that 1 bit of perfect SK, which is also perfect PK, can
be achieved with transmission over the DMC and
no public communication. Terminal transmits with
probability (w.p.) , and terminals and observe
equal to or with probabilities . Clearly, , of
rate equal to , is a perfect SK for
as well as a perfect PK for with privacy from

. Since at most 1 bit per channel transmission can be
recovered at any terminal, has the best rate possible, i.e.,

.

Several features of the schemes used for achieving the SK
and PK capacities above will turn out to hold in general (The-
orem 4.2). Specifically, these capacities are achieved with ter-
minal not communicating publicly, and with the remaining
terminals communicating publicly at most once, without ran-
domization, and only upon the completion of terminal ’s trans-
missions over the DMC . Also, when , the SK can

be formed first by terminal and transmitted over the DMC
with suitable encoding, upon which the output terminals in
securely recover it with the assistance of public communica-
tion. When privacy from terminal is sought, the PK capacity
is achieved with terminal transmitting without randomization
over the DMC.

III. SOURCE MODELS REVISITED

Consider a DMMS with generic rvs
. Given i.i.d. repetitions of

, we assume that each terminal observes the
th component of , whereupon all the terminals are

allowed to communicate over a public noiseless channel,
possibly interactively in several rounds, with all such
communication observed by all the terminals. The goal is
to generate secret common randomness for a given set of
terminals , perhaps with privacy from a set of terminals

(disjoint from ). The definitions of -SK,
-PK, and SK and PK capacities and are

similar to those for the channel models described in Section II.
However, the situation here is simplified by the fact that all the
communication occurs only following the observation by the
terminals of their respective components of , which is
now an i.i.d. repetition of .

The capacities and for source models have
been determined in [7]. Slight formal differences appear therein,
in that the set was rather than , and
instead of -SK and -PK, -SK and -PK were defined
corresponding to . The following theorem reproduces the
main result of [7] in a modified form which is better suited for
the purposes of this paper.

Throughout the paper, the following notation will be used.
For , let

and , its subset consisting of those
that contain . Let be the set of all collections

of weights , satisfying

for all

Similarly, for and , let

The set of collections of weights
is defined analogously as above with the roles of

and now played by and , respectively.

Remark: For any partition of , i.e., a family of disjoint
sets whose union equals , in case , it is clear that
the collection of weights defined by or according to
whether or not , belongs to . In particular, is
always nonempty if . Any can be regarded as
a “fractional partition” of , and similarly, as a
fractional partition of . This notion of fractional partition is
a special case of fractional packing that has recently been used
in information theory in [11].
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Theorem 3.1: For a source model with generic rvs
, the SK capacity for a set of terminals

, with , is

where

Similarly, the PK capacity for with privacy from a set of ter-
minals is

where

For later reference, we note that is the smallest rate
of “communication for omniscience” (CO rate) for , namely,
the smallest number such that, for suitable communication

of the terminals in , and with

is -recoverable from for each . Simi-
larly, is the smallest achievable CO rate for when
each terminal reveals all of . Such achievable CO
rates are defined with the obvious modification of the above that
the communication in has to satisfy for

, and the rate condition applies to not all of but to
.

Proof: By [7, Theorems 1, 3], the first equality holds with
denoting the smallest CO rate for . By [7, Proposi-

tion 1], equals the minimum of subject to the
Slepian–Wolf constraints

By the duality theorem of linear programming as stated
in [7, Sec. 5], that minimum is equal to the maximum of

, for . This proves the
first assertion.

The second assertion holds similarly: by [7, Theorems 2, 3],
the formula for holds with denoting the
smallest achievable CO rate for when the terminals
reveal all of . By [7, Proposition 1], this equals
the minimum of subject to

Again, by the duality theorem of linear programming, that min-
imum is equal to the maximum of
for .

Remark: The maximizing in Theorem 3.1 need not be
unique in either case. As discussed in [7, Sec. V], it can be

chosen in such a manner that holds only for a collection
of sets whose incidence vectors are linearly independent.
This fact facilitates the actual computation of SK and PK
capacities but will not be used in this paper.

The next theorem includes a new result that the SK or PK
capacity can be achieved with the key being generated at any
chosen terminal . In addition to being of independent
interest, it will play a role in the achievability of SK and PK
capacities for certain source and channel models with WSI, in
Section V. The proof of this result uses a technical lemma which
is provided first.

Lemma 3.1: If n rv is -recoverable from a rv ,
then for i.i.d. repetitions of it holds that is

-recoverable from for a suitable function
, where , and

vanishes to exponentially as .
Proof: The -recoverabilty assumption implies by Fano’s

inequality that for some function of
. Hence, by the Slepian–Wolf theorem, can be recovered

from and a code for of rate at most , with
probability of error approaching 0 exponentially rapidly.

Theorem 3.2: For a source model, the SK and PK capacities
can be achieved with noninteractive communication without
randomization, with each terminal sending a single
message which equals if . Further, the SK
or PK capacity can be achieved with the key generated at any
particular terminal , obliviously of the public communi-
cation. Precisely, for any and observation length , for
each there exists with
exceeding or , respectively, and

(with if ),
such that is -recoverable from and for each

different from , where both and the security index
vanish exponentially as .

Proof: The first assertion is proved in [7, Theorems 1–3].
The second assertion, which is new, is proved next. We note that
the following proof gives the first assertion as well.

Consider first the case of SK capacity. Fix , and some
which will be specified later. According to the passage

after Theorem 3.1, for any and sufficiently large,
there exists communication with

such that is -recoverable

from and for each . The proof will rely on this
. Note that

(5)
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Here, the first inequality is a consequence of the -recoverability
of from , by Fano’s inequality, and the second
inequality follows from

since by Theorem 3.1.
It suffices to prove the assertion for block lengths equal to in-

teger multiples of . To this end, consider i.i.d. repetitions of
, i.e., . Then, for each ,

Lemma 3.1 above applied to gives

that is -recoverable from , for

a suitable function where
, and decays to exponentially rapidly as

. It follows, setting
that satisfies the recoverability assertion of
the theorem on , with replaced by .

It remains to show that there exists a function of
that satisfies the assertions on , again with replaced by

if plays the role of . To this end, we apply [7,
Lemma B3] with , and ,
where and the function of are as above. With
this choice, by (5) and the definition of

if (unspecified until now) has been chosen suffi-
ciently small. Hence [7, Lemma B3] gives that there exists

with
and vanishing to exponentially rapidly as

. This completes the proof for SK capacity.
For PK capacity, the following minor modifications

are needed: the communication is now chosen as
, with sat-

isfying

Then the bound in (5) with replacing is ob-
tained noting that in the third line of (5) is bounded
as

and using that

by Theorem 3.1. In the final step of the proof, the security index
is the apt one also in the PK case, since the

communication contains all of , , by construc-
tion.

IV. MAIN RESULTS

Our main results are single-letter characterizations of SK and
PK capacities for channel models with no WSI.

Given a channel model described in Section II, for a prob-
ability mass function (pmf) on and (resp.,

), denote

(6)

and

(7)
where is a collection of rvs with

and .

Theorem 4.1: The SK capacity of the channel model
for a set of terminals , and the PK capacity
for with privacy from a set of terminals , are, respec-
tively, equal to the maxima over of the SK and PK capacities
of the corresponding emulated source models. Specifically

(8)

and

(9)

Proof: The proof is given in two steps: (i) the equality
of the max-min and min-max expressions in (8), (9), and the
achievability part; and (ii) the converse, which is the hard part.

(i) Both and are continuous functions
of and , defined over convex compact sets, concave in by
Lemma A.1 in Appendix A, and affine in . Hence, the claimed
equalities in (8), (9), follow from the minimax theorem (cf., e.g.,
[10]).

The achievability part of Theorem 4.1 is obtained by
observing that terminal can emulate a source model by
transmitting i.i.d. rvs with pmf over the DMC . By
Theorem 3.1, the SK capacity of the emulated source model is
equal to , and, therefore, the maximum
over of that minimum is an achievable SK-rate for the
channel model. Similarly, from Theorem 3.1, the maximum
over of is an achievable PK-rate
for the channel model.



CSISZÁR AND NARAYAN: SECRECY CAPACITIES FOR MULTITERMINAL CHANNEL MODELS 2443

(ii) The converse proof for PK capacity is presented. The anal-
ogous result for SK capacity then follows as the special case

.
Suppose that the rv represents an -PK for with

privacy from , achievable with randomization and
public communication , where and ; see
Definition 3 and the remark following it. Supposing w.l.o.g. that

, where comprises the commu-
nication of all the terminals (see the remark preceding
Definition 3), the secrecy condition (2) is

Thus, using the Corollary of Lemma A.2 in Appendix A with
in the role of , , and in the role of ,

we get that for every

(10)

where . Rearranging terms, we get

(11)

where

and

as

A key ingredient of the proof is to show that the expression
within in (11) is bounded above by

(12)

(see (7)). Our proof of this bound involves a rather tedious ma-
nipulation of information quantities, and therefore is relegated
to Appendix B. Using the mentioned bound, (11) implies that

(13)

for every

Hence, is an upper bound for
achievable PK rates.

Theorem 4.2: The secrecy capacities and
can be achieved with all public communication occurring after
completion of transmission over the DMC and terminal
not communicating over the public channel, and each terminal
in communicating publicly only once, without interac-
tion or randomization. If , then, in addition, the SK or PK
can be generated at terminal at the outset as a uniformly dis-
tributed rv, and then transmitted over the DMC by means of a
suitable randomized encoding. If , the PK capacity can be
achieved with terminal transmitting a deterministic sequence
over the DMC.

Remark: The last assertion of Theorem 4.2 cannot be
strengthened to terminal transmitting a constant sequence;
see Example 2 below.

Proof: As shown in Theorem 3.2, for a source model the
SK and PK capacities can be attained in such a way that each
terminal sends a single public message ,
where in the PK case, if . Moreover, if

, the key can be generated at terminal oblivious of the
public communication, as a function of . It follows by step
(i) of the proof of Theorem 4.1 that the SK and PK capacities
for the channel model can be achieved with only terminal ran-
domizing (transmitting over the DMC an i.i.d. sequence
that can be identified with the randomization ) and with each
terminal sending a single public message as above.

To show that terminal need not actually send any public
message, we concentrate on the PK case, as in part (ii) of the
proof of Theorem 4.1. Consider an -PK achieved with
randomization at terminal and public communication

as above, with , as .
Thus, is -recoverable from if , i.e.,

and has security index

In particular

By the expressions at the top of the next page, it follows that for
some possible value of

This shows that if terminal changes the pmf of to a (no
longer i.i.d.) pmf which is the conditional pmf of the i.i.d. se-
quence conditioned on , the same public communica-
tion as above renders an -achiev-
able PK. For this modified non-i.i.d. , the public message
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and

becomes the constant which means, in effect, no public
communication from terminal . If , then on account
of the cited consequence of Theorem 3.2, the conclusion re-
garding achievability with no public communication from ter-
minal holds for equal to a function of where is
non-i.i.d., in general. In order to generate such and (with
given joint pmf), we can generate at the outset and then
by randomized encoding as a function of and an auxiliary
randomizing rv. By Pinsker’s inequality, the variation distance
of the pmf of from the uniform pmf on is exponentially
close to as since so is the corresponding I-divergence
close to . Hence, can be obtained by random-
ized encoding from an rv which is uniformly distributed on

such that the probability that is exponentially close
to . Then this is an SK or PK with the asserted properties.

If , then the previous argument applies with
, and changing the i.i.d. input pmf of the DMC to the

conditional pmf with the condition , means that the i.i.d.
input sequence is replaced by a deterministic sequence.

This completes the proof.

Theorem 4.3: If no randomization is allowed at terminal ,
then for a set of terminals , the SK capacity equals

, and the PK capacity with privacy from
equals . Both the capacities can be achieved
with terminal sending a deterministic sequence over the DMC

and not communicating over the public channel, and the re-
maining terminals using the public channel as in Theorem 4.2.

Remark: In Theorem 4.3, the case has been excluded
as then, with randomization not allowed at terminal , the ca-
pacities in question are zero. Indeed, since the secret key must
be -recoverable from , in the case constant, it
cannot be nearly independent of while having a positive rate.

Proof: Suppose that no randomization is allowed at ter-
minal , and let be an -SK for a set of terminals

achieved with public communication . The previous
results do not directly justify the assumption that this commu-
nication is noninteractive or that it does not use randomization.
Nevertheless, since a constant by hypothesis, must be
uniquely determined by the communication , and therefore the
security indices and with
are equal. Hence, is also an -PK for with privacy from
terminal , and the SK capacity in question does not exceed

. On the other hand, the PK capacity
can be achieved with terminal transmitting a deterministic se-
quence over the DMC by Theorem 4.2, and hence the pre-
vious SK capacity is no smaller than .

A similar argument yields that the PK capacity for
with privacy from equals .

Both the capacities in question can be achieved with terminal
sending a deterministic sequence over the DMC , since

and can be attained likewise by
Theorem 4.2.

The remaining assertions also follow by Theorem 4.2.

The next theorem provides necessary and sufficient condi-
tions for the positivity of the SK capacity and the PK ca-
pacity . It is not difficult to give a similar condition
for the positivity of when and are arbitrary (dis-
joint) subsets of ; however, we omit this as the case
appears to be of main interest, and the positivity condition for a
general is rather ungainly.

For subsets and of , is said to split if both
and are nonempty. If is a nonempty subset of ,
the -component of the DMC is the
DMC defined by

This is said to be an independent component of if either
(thus, ) or else

for every in .

Theorem 4.4:
(i) For , the SK capacity is positive iff for each

that splits , the DMC either has positive
Shannon capacity or is not an independent component of .

(ii) For , the PK capacity is positive
iff for no that splits is an independent
component of .

Proof: By Theorem 4.1, the SK and PK capacities
of the channel model are obtained by maximizing the cor-
responding SK and PK capacities of the emulated source
models with generic rvs satis-
fying , with respect to . By
[7, Theorem 5], the SK capacity of the source model is pos-
itive iff for every that splits . For
the channel model, owing to symmetry, consideration can
be restricted to . Then, equals

(or if
, which splits iff ), and hence this mutual

information is positive for some iff either of the two
conditions in part (i) holds.

Also, by [7, Theorem 5], the source model with
has positive PK capacity iff for every

that splits . Clearly, this positivity holds for
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some iff is not an independent component of
.

Example 2: Consider the DMC
where and

Here, terminals and observe DMC outputs which are inde-
pendent and uniform on regardless of the DMC input,
while the observation of terminal coincides with that of ter-
minal or terminal according to whether or .

Consider PK generation for with privacy from
. Letting , to compute the PK capacity

given by Theorem 4.1, note first that

and that consists of all nonempty proper sub-
sets of ; further, equals , , and

for and , respectively, and it equals for
and . By Theorem 4.1

with the maximum taken under the constraints

It can be seen that a saddle point exists above with
and

Thus, .
The following scheme achieves 1 bit of perfect PK for

with privacy from using transmissions
over the DMC followed by a public message from terminal

. Terminal transmits . Terminal sends
the public message

. Clearly, terminals can perfectly
recover from and , while satisfying the secrecy
condition (2)

Note that this scheme is in concordance with the assertions of
Theorem 4.2 above. In particular, with , the PK ca-
pacity is achieved with terminal transmitting a deterministic
sequence over the DMC. This deterministic sequence, however,
cannot be a constant sequence; in fact, the latter would allow no

secrecy generation at all for the set of terminals .

Example 3: Consider the DMC
with

so that consists of independent components
. We shall compute the PK capacity with

(otherwise, clearly ).
By the conditional independence of the ’s given , ob-

serve that if

and, if

Then, for

Here, the last term is bounded above by

noting that for . Using the definition of
, it follows that

and equality is achieved if is given by for
and , and otherwise, where
maximizes . This proves that
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Thus, by Theorem 4.1

With , we obtain the SK capacity as
, which is seen to coincide with

the lower bound mentioned in the passage preceding Example
1 in Section II. Observe that the SK and PK capacities remain
unchanged if is replaced by , which is to be expected
in view of the manner of SK generation given in that passage.

Finally, we remark that for , the emulated source
models corresponding to this example have, as their underlying
DMMS, a Markov chain on a tree [7, Example 7] (see also
the passage preceding Theorem 5.1 below) with vertex set

and edge set . Hence,
and above are also obtained as the maximum

over of the corresponding capacities for the emulated source
models determined in [7, eqs. (36), (37)].

V. MODELS WITH WSI

In this section, source and channel models with WSI are ad-
dressed. Our results are partial.

Formally, a source model with WSI involves an underlying
DMMS with generic rvs , where the ter-
minals in cooperating in secrecy genera-
tion observe , respectively, whereas they re-
main ignorant of which is observed as WSI by the eaves-
dropper. Similarly, a channel model with WSI involves an un-
derlying DMC , where ter-
minal governs the input, terminals observe the cor-
responding outputs, while all remain ignorant of the -outputs
which are observed as WSI by the eavesdropper. In both these
models, the permissible behavior of the terminals in is the
same as in a model without WSI. The goal of the terminals

, once again, is to generate secret common random-
ness for a given set of terminals, which is concealed
from the eavesdropper that, in addition to observing the public
communication of the terminals in and wiretapping the ter-
minals in a given set (disjoint from and possibly
empty), now also possesses the WSI . Accordingly, in the
definitions of -SK and -PK, the secrecy conditions
(1) and (2) must be strengthened to

and (14)

respectively. Except for this modification, the definitions of
SK and PK capacities remain unchanged; these capacities for
models with WSI will be denoted by and .

Unlike for SK and PK capacities for models without WSI,
no single-letter characterization of or is
available. Such a characterization of is lacking even
in the simplest case of source models with ,
which has been extensively studied in the literature. One of
the partial results available for this case is an upper bound for

given in [1]; see also [15], where the expression ap-
pearing in the bound has been termed “intrinsic conditional mu-
tual information.” This bound has been improved upon in [17].
A further improvement has been reported recently in [9] as a
particularization of a new upper bound for SK capacity derived
therein for (in our terminology). A
generalization is also provided in [9] of the notion of CO rate
introduced in [7], in terms of which a nonsingle-letter charac-
terization of secrecy capacities for source models with WSI is
given.

The simplest upper bound for secrecy capacity known for
easily extends to the general case, as noted for

source models in [7], where a sufficient condition for its tight-
ness has been stated, regrettably with a flawed proof. Below, we
describe this bound for both source and channel models with
WSI and, as a partial remedy for the flaw, prove its tightness
under a sufficient condition which is more restrictive than that
in [7], whose sufficiency remains unresolved.

Consider first source models with WSI. Given a model whose
underlying DMMS has generic rvs , we as-
sociate with it a model without WSI determined by the same
DMMS but with one more terminal cooperating in secrecy gen-
eration, where the new terminal observes which is
wiretapped by the eavesdropper. The set of terminals
for which the secret key is generated remains as such, while the
set of wiretapped terminals cooperating in secrecy gen-
eration grows to .

Lemma 5.1: The PK capacity , or the SK ca-
pacity if , for the model with WSI is bounded
above by the PK capacity of the associated model without WSI.

Proof: As using can only help in secrecy generation,
any -achievable PK rate (or SK rate, if ) for the
model with WSI is an -achievable PK rate for the associ-
ated model without WSI.

Note that if in the original source model with WSI, the rv
were altered to another rv which is conditionally inde-

pendent of given , this change can only increase the ca-
pacities and since a key satisfying a se-
crecy condition in (14) for , will also do so for replacing .
The latter capacities, with playing the role of , can also be
bounded above using Lemma 5.1. This leads to a family of upper
bounds for the original or , where all the
bounds have single-letter characterizations. These bounds can
then be optimized with respect to the channel
that gives the conditional pmf of given . In the special case

, the intrinsic conditional mutual information
bound mentioned above is recovered.

We consider next channel models with WSI. Given a model
whose underlying DMC is , as-
sociate with it the model without WSI determined by the same
DMC but with the -outputs observed not only by the eaves-
dropper but also by a terminal which cooperates in secrecy
generation; the set is left unchanged while is replaced by

as above. Lemma 5.1 applies to channel models
as well.

Similarly as for source models, Lemma 5.1 leads to a family
of upper bounds for channel models as well. Indeed, if in the
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original model with WSI, the underlying DMC
is changed to the DMC

defined by

for an arbitrary channel , this change can only result
in increasing the capacities and . For each
such , these capacities can be bounded above by means of
Lemma 5.1; the resulting bounds can be optimized with respect
to the channel .

The next theorem provides a sufficient condition for the tight-
ness of the bound in Lemma 5.1. This condition involves the
concept of a Markov chain on a tree; see [8], [7].

Let be a connected undirected graph with no cycles, i.e., a
tree, with vertex set . For an edge of , denote
by the set of all vertices of that are connected
with by a path containing the edge . A family of rvs

form a Markov chain on the tree if for all edges
of , the conditional pmf of given the collection of rvs

coincides with the conditional pmf of given .
Equivalently, the rvs , , constitute a Markov chain
on if their joint pmf has the form

where denotes that vertex of for which is an edge
belonging to the path from vertex to vertex . Note that a
Markov chain in the usual sense is a Markov chain on a tree

comprising a single path.

Theorem 5.1: Let be a tree with vertex set
, and a subset of of size ,

such that the subtree of spanned by is a path.
Then a sufficient condition for the tightness of the bound in
Lemma 5.1, with this and and any , is:

(i) for a source model, that the generic rvs
of the underlying DMMS form a Markov chain on the

tree (with );
(ii) for a channel model, that the underlying DMC

is of the form

where (15)

with defined by as above.

Remark: For source models without WSI such that the
generic rvs of the underlying DMMS form a Markov chain on
a tree, a simple explicit formula for PK capacity is available [7,
eq. (37)]. Hence, for models with WSI that meet the sufficient
condition in Theorem 5.1(i), the SK or PK capacity or

is also given by a simple expression. In the special
case when – – – – – – – – is a Markov chain and

denote the smallest and largest elements of , we
obtain using [7, eq. (33)] that

(16)

Unfortunately, Theorem 5.1 does not answer the case when
– – – – – – – – – – and . In [7],

based on the mentioned flawed result, it was claimed that (16)
held in this case too. It remains unresolved whether this is true,
even if , . ( in [7] denotes the present

.)
Proof:

(i) Source model: It can be assumed that is an endpoint
of the path that is the subtree of spanned by , for
else both the capacities claimed to be equal are . Let the other
endpoint of this path be ; clearly, .

For the model without WSI which is associated with the
given model with WSI according to the passage preceding
Lemma 5.1, the PK capacity can be achieved with the key
generated by terminal as , by Theorem
3.2. By the same theorem, this is -recoverable at each

because the entire is, using communication
, where

and also . It suffices to show that in the
present case, a knowledge of is not needed to recover .

Now, given , let be the starting edge of the
path from to . Then, since belongs to the path connecting
and , it holds that , .
The Markov assumption implies that the collections of rvs

and are conditionally independent given
, and hence the same holds also for their i.i.d. repetitions.

It follows, in particular, that is
conditionally independent of given

. Hence, in order to recover from and the com-
munication , the part of this
communication containing is redundant.
This proves that a knowledge of is unnecessary to recover

.
(ii) Channel model: Consider a channel model with WSI, with

underlying DMC , that satisfies
the condition in Theorem 5.1. The PK capacity of the associated
channel model without WSI is equal, by Theorem 4.1, to the
maximum with respect to of the PK capacities of the source
models (without WSI) whose generic rvs
have joint pmf of the form . On
account of (15), the latter means that form
a Markov chain on the tree . Hence, taking the maximizing

, the PK capacity of the corresponding source model can be
achieved without any knowledge of , by the proof of part (i).
Thus, the strategy that achieves this PK capacity also achieves
the (SK or) PK capacity of the original channel model with WSI.

We illustrate Theorem 5.1 and its limitations by two examples
involving the graphs shown in Figs. 1 and 2. For both graphs ,
we consider source models with WSI whose underlying DMMS
has generic rvs , , , , which form a Markov chain
on , and channel models with WSI whose underlying DMC
is of the form (15). In both cases, and vertex

represents the additional terminal needed in the associated
model without WSI.

Example 4: For the graph of Fig. 1, the hypothesis of The-
orem 5.1 is valid for and , but not for
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Fig. 1. Example 4.

Fig. 2. Example 5.

or . When , Theorem 5.1
gives that the SK capacity for the source model
with WSI is equal to the PK capacity of the associated source
model without WSI that has , ,

. According to [7, Example 7], this PK capacity equals
. Similarly, Theorem 5.1 gives that the PK ca-

pacity is equal to the PK capacity of the as-
sociated model without WSI, again with ,

, but now with . Hence,
.

For a channel model with WSI, the corresponding capac-
ities and are obtained by
maximizing, with respect to , the source model capacities

and for rvs , , ,
with joint pmf . The source or

channel model with WSI, corresponding to is not
covered by Theorem 5.1. A whiff of the potential difficulty of
determining the SK capacity (or the PK capacity

) is given by the close connection of this
problem to that studied in [13], [15], whose solution remains
elusive. The latter asks, in the “three independent channel”
situation of Fig. 1 with , for the SK capacity
(in our terminology) for the source model with
WSI for which . This differs from the problem
above of determining for the source model with

only in that the model with
excludes terminal 0 from cooperating in secrecy generation.

Example 5: The graph of Fig. 2 is a path, and , ,
, form a Markov chain on iff they form a Markov

chain in the usual sense in the order – – – – – – .
The hypothesis of Theorem 5.1 is valid for any choice of ,
and we concentrate on the case , . By
Theorem 5.1, the PK capacity for the source
model with WSI is equal to the PK capacity for the associated
model without WSI, with , ,

, which is . As before, the PK
capacity for the analogous channel model
with WSI is obtained by maximization with respect to the
pmf of . Recall that the reason for the equality of the PK
capacities for the source model with WSI and the associated
model without WSI is that the latter PK capacity can be
achieved without any use of the knowledge of ; see the

proof of Theorem 5.1(i). If the latter PK capacity also could
be achieved upon dispensing with the knowledge of both
and , it could be concluded similarly for the source model
with WSI represented by , i.e., with ,
and underlying DMMS with generic rvs , , , that
the SK capacity also would be equal to . It
remains open whether the equality is true; see the remark after
Theorem 5.1.

VI. DISCUSSION

Channel models for generating a Shannon-theoretic secret
key for several parties have been studied, in which the per-
mitted transactions comprise transmissions over a secure DMC
with one input and multiple output terminals, as well as unre-
stricted communication among all the terminals over a public
noiseless channel. The objective is to generate secret common
randomness at the largest possible rate for a given set of se-
cret key-seeking terminals, which is concealed from an eaves-
dropper with access to the public communication and perhaps
also to a set of “wiretapped” terminals disjoint from . All the
terminals, including those in the set , cooperate in achieving
this objective. The corresponding optimal rates (secrecy capac-
ities) have been called the SK and PK capacity, respectively. In
more complex models, the eavesdropper may have additional
“wiretap side information,” not available to any of the cooper-
ating terminals.

Our primary focus has been on models without WSI, for
which single-letter characterizations of SK and PK capacities
have been derived using our previous results for source models
[7]. By our main result, when randomization is allowed at the
input terminal, the secrecy capacities for the channel model can
be achieved by emulating a source model upon transmitting
over the DMC an i.i.d. sequence of rvs, with the best pmf. This
need not be the most efficient way to achieve a secrecy capacity,
for in general, it requires terminal to use the public channel
too. However, it is shown that a key of optimal rate can be
generated with the input terminal not having to send any public
message, and with each of the remaining terminals sending at
most one public message, without interaction or randomization.
When the input terminal belongs to the set , it can generate
the key at the outset and transmit it over the DMC without loss
of rate optimality. The last assertion is a consequence of a new
result for source models: the SK or PK capacity can be achieved
with the key being generated by any chosen terminal in the set

, obliviously of the public communication. When no random-
ization is permitted at terminal , the SK or PK capacity equals
the PK capacity of the counterpart previous model modified to
include in the set of wiretapped terminals, and is achieved
with terminal transmitting a deterministic sequence over the
DMC; a constant sequence, however, may be inadequate.

We note that our results extend to models with constraints
imposed on the DMC inputs. Suppose that the symbols
transmitted by terminal over the DMC are subject to
the input constraint for a nonnegative
function defined on , with . For
a pmf , denote, with a slight abuse of notation,

. Theorem 4.1 holds under this input
constraint, with the maxima over in (8) and (9) now being
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subject to . In the achievability part of Theorem 4.1,
the rv is chosen with pmf that satisfies .
Then the i.i.d. rvs , transmitted by terminal in
emulating a source model, satisfy the input constraint above
with probability approaching as . In the converse part,
observe that by the concavity in of the function
(see Lemma A.1 in Appendix A), the right-hand side of (12)
can be further bounded above by ,
where satisfy the input constraint. Then, since

the maximum in (13) can be taken over satisfying .
For models with WSI, single-letter characterizations of se-

crecy capacities are elusive, in general, even in the extensively
examined case of SK capacity for two terminals. We have
provided partial results for (source and) channel models with
WSI. Specifically, upper bounds for SK and PK capacities
have been given in terms of their counterpart capacities for
associated models without WSI; the latter models are obtained
by assuming the wiretapped terminal with side information
to cooperate in generating the key. Sufficient conditions for
the tightness of these bounds have also been provided. The
conditions are more restrictive than the sufficient condition for
tightness of the bound for source models stated in [7] with a
flawed proof.

We emphasize that for general source and channel models
with WSI for which single-letter characterizations of SK or PK
capacities remain elusive, we make no claims on the manner of
transmission and communication strategies by which the capac-
ities could be achieved. In the special circumstance of Theorem
5.1 when the SK and PK capacities of a model with WSI have
been determined, these capacities can be achieved by means
of the same simple manner of strategies as for models without
WSI, except that the key cannot necessarily be generated by ter-
minal . In the presence of channel input constraints, the results
of Theorem 5.1 can be extended as for channel models without
WSI.

APPENDIX A

In this appendix, and denote disjoint subsets of
with . The notation introduced in Sec-

tion III is followed; in particular, and denote, re-
spectively, the sets of collections of weights

and defined there.

Lemma A.1: For any , defined by (6)
for a given DMC is a concave function
of ; and for any , so is defined by
(7).

Proof: Since implies by
definition, we have by (6) that

As a function of , the pmf of is affine and
therefore is concave, and the conditional entropies

and are affine; this proves the first
assertion.

The second assertion follows similarly by an analogous iden-
tity from (7) that

using the fact that is a concave function of the
joint pmf of .

Lemma A.2: Let and be
rvs such that is -recoverable from for each .
Then for an arbitrary

where .
Proof: If , then by definition, .

As is -recoverable from if , by Fano’s
inequality

for as in the lemma. Hence, for

This, and

with imply, since
, , that
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Hence

the last step again by Fano’s inequality. Rearranging terms, the
proof is completed.

Corollary: Suppose that for , , and , the rv is
-recoverable from for each . Then, for an

arbitrary

(A1)

Proof: By Lemma A.2 applied to in the role of

(A2)

for arbitrary . If
, then defined by

if
if
if

belongs to , and (A2) applied to this reduces to (A1).

APPENDIX B

In order to complete the proof of Theorem 4.1, we prove that
in (11)

(B1)

First, observe that the left-hand side of (B1) is

(B2)

where

(B3)

Now, in (B2)

(B4)

where the last equality holds because is a function of
and so is determined

by , and is conditionally independent of
given .

Next, in (B2)

(B5)

where, for the same reason as above,

if
(B6)

Similarly, in (B2)

(B7)

where

(B8)

if By (B2)–(B5) and (B7), the left-hand side of (B1)
decomposes as with
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Each of the terms , , and will be dealt with separately.
First

Here, is nonempty iff
, in which case by definition.

Thus, the last term above equals , and
therefore .

Second, since each of the terms in the sum is
nonpositive by the Corollary of Lemma B.1 below, when ap-
plied to the communication of the terminals in in-
terval , with each terminal possessing initial knowledge

.
Third, we claim that for each , the th term of

satisfies

(B9)

Proving this will establish (B1).

In the case , (B9) holds with equality. For then, by (B6)
and (B8), the left-hand side of (B9) is

Using , the previous expression clearly equals the
right-hand side of (B9).

Turning to the case , write the sum on the left-hand
side of (B9) as two sums over , for and

, respectively. Since and so
, it follows by using (B8) that

the left-hand side of (B9) equals the expression of (B10), shown
at the bottom of the page . Here, for with

Further, since implies

The last entropy difference is equal to
, and so (B10) is bounded above by

thereby establishing (B9) also for the case . This com-
pletes the proof of (B1).

(B10)
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Lemma B.1: Given rvs , for interactive
communication of the terminals in the sense of Def-
inition 1, with terminal possessing initial knowledge

, the inequality

(B11)

holds for an arbitrary family of subsets of and numbers
, , that satisfy for each ,

where .
Proof: By Definition 1, is a function of and

, and hence in the decomposition

the terms vanish. Thus

It follows that

as claimed.

Corollary: Given rvs , and a set
, for interactive communication of the terminals

, with terminal possessing initial knowledge
, the inequality

holds for an arbitrary family of subsets of and numbers
, , that satisfy for each .

Proof: Apply Lemma B.1 with in the role of ,
in the role of , and with the role of , , now played

by , , and that of by . As has been
replaced by , we must replace—in (B11)– by to
get the inequality

Since consists of subsets of , here ,
so that the previous inequality is the same as the one claimed.
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