
Addressing Large Models:

Multiple and Hierarchical
Universality

Meir Feder
School of Electrical Engineering

Tel-Aviv University

Two Messages
• An information theoretic framework to machine learning:

Under the assumption of a given “Hypothesis Class”
• Replace the “PAC” Criterion
• Suggests information theoretic learnability measures
• Based on universal source coding, universal prediction

• A proposal (with a conjecture) for the “over-parameterized” case where the
hypothesis class is not given, or it is ``too large’’

Multiple and hierarchical universality
• Learn both a model and a class (or hierarchy of classes)
• Learnability with non uniform convergence
• Examples of success from universal source coding. For other learning problems
• The essence of modern learning: Why DNN, transformers and similar can “explain”, “generalize. Open questions..

Universality

Model Independent Schemes

Yet, Strive to Attain Optimal, Model
dependent, Performance

An over 30 years Journey
• Many works in the 90’s with Neri Merhav: universal coding and prediction.

Later, universal channel decoding

• Amos Lapidoth on universal decoding

• Nadav Shulman’s less known work on rateless codes for universal channel and joint source/channel coding

• Yuval Lomnitz on universal channel coding with feedback, individual channels

• Many students during the years: Ofer Shayevitz, Nir Weinberger, Eado Meron, Amir Ingber, Elona Erez, Ronen Dar, Zvi
Reznic, Nir Elkayam, others

• Recent works on universal learning: Yaniv Fogel, Koby Bibas, Shachar Shayovitz, Uriya Pesso, Adi Hendel

• Re-examining aspects of universal coding/prediction with Yury Polyianskiy, Amichai Painsky

Inspiration and Mentors

Jacob Ziv

Tom CoverJorma Rissanen

Lossless Source Coding

Online Prediction with Log-Loss

The source coding problem

• Encode a source symbol 𝑥 or more generally a source sequence
𝑥 = 𝑥𝑛 = 𝑥1, … , 𝑥𝑛

• Existent and known source probability 𝑃(𝑥):

• With Huffman or arithmetic coding:
encode each source sequence by − log 𝑃(𝑥) bits (within 1-2 bits)

• Expected codelength per source symbol (within 𝑂
1

𝑛
 bits): The entropy

What can be done when 𝑃 is unknown or even nonexistent?

Universal source coding

• Suppose a “coding probability” 𝑄 𝑥 .

• Any source coder may correspond to a probability assignment with

 𝑄 𝑥 = 2−𝐿 𝑥 , 𝐿(𝑥) the codelength*

• With true 𝑃 the expected codelength: 𝐻 𝑃 + 𝐷(𝑃||𝑄)

• How to choose 𝑄 optimally?
 When 𝑃 is unknown or even non-existent

* satisfying Kraft’s inequality with equality

The concept of Universal Probability

A single, universal 𝑸 𝒙

Can be used no matter what 𝑃 𝑥 is, even if it is non-existent!

1. Universality w.r.t a model class

2. Universality w.r.t a very large class of models (all ergodic sources..)

3. Twice/Multiple/Hierarchical universality

The equivalence of coding and on-line
prediction with log-loss

• Data Compression => Prediction:
• A coding probability (possibly universal) 𝑄 𝑥 = 2−𝐿 𝑥 , 𝐿(𝑥) the codelength

• Can use this probability assignment for prediction by the chain rule:

 𝑄 𝑥 = ς𝑡=1
𝑛 𝑄 𝑥𝑡 𝑥𝑡−1

• To predict the symbol 𝑥𝑡 given the past observation 𝑥𝑡−1 simply use:

𝑏𝑡 = 𝑄 𝑥𝑡 = 𝑥 𝑥𝑡−1) =
𝑄(𝑥𝑡−1𝑥)

𝑄(𝑥𝑡−1)
=

σ
𝑥𝑡+1

𝑛 𝑄(𝑥𝑡−1𝑥𝑥𝑡+1
𝑛)

σ
𝑥𝑡

𝑛 𝑄(𝑥𝑡−1𝑥𝑡
𝑛)

• The accumulated log-loss over the sequence 𝑥 is the codelength, −log 𝑄 𝑥

The equivalence of coding and on-line
prediction with log-loss

• Prediction => Data compression:
• x1 x2 … xn is the data to encode, from a finite alphabet A

• The (deterministic) action bt is a probability vector assigned to xt
bt = {qt (| x1 x2 … xt-1)}

• The loss: (bt , xt) = - log qt (xt | x1 x2 … xt-1) is the ideal codelength for encoding xt .
Given the assigned distribution, an arithmetic coder can generate a code word with
ideal code length (bt , xt)

• The accumulated loss is the total code length. It is also - log of the probability
assigned to the entire sequence x1 x2 … xn , i.e,

− log 𝑄 𝑥𝑛 = − log ෑ

𝑡=1

𝑛

𝑞𝑡 𝑥𝑡 𝑥𝑡−1) = −

𝑡=1

𝑛

log 𝑞𝑡 𝑥𝑡 𝑥𝑡−1)

GENERATIVE AI MODELS
LIKE GPT…

ARE LEARNED BY SUCH ON-LINE
PREDICTION

Universal Prediction with General Loss

• By coding (or prediction with log-loss) generate 𝑞(𝑥𝑡+1|𝑥𝑡)

• Apply “optimal decision” using the universal predicted probability?

𝑏𝑡+1 = arg min
𝑏

𝔼
𝑞 𝑥𝑡+1 𝑥𝑡 ℓ(𝑏, 𝑥)

• Not always!
For example, for 0-1 loss need to “randomize” decision
 (F-

• General Solution: Follow the “Perturbed Probability” (F-, 2013)

Universal Prediction with General Loss

• By coding (or prediction with log-loss) generate 𝑞(𝑥𝑡+1|𝑥𝑡)

• Apply “optimal decision” using the universal predicted probability?

𝑏𝑡+1 = arg min
𝑏

𝔼
𝑞 𝑥𝑡+1 𝑥𝑡 ℓ(𝑏, 𝑥)

• Not always!
For example, for 0-1 loss need to “randomize” decision
 (F-Merhav-Gutman 92)

• General Solution: Follow the “Perturbed Probability” (F-Lomnitz, 2013)

Universality with Respect to a
Given Model Class

Classical Universal Coding: w.r.t a Model Class

A set of models, 𝑃𝜃 𝑥𝑛 , 𝜃 ∈ Θ. “Hypotheses Class”.

• Stochastic setting:

• 𝑥𝑛 is generated by some model 𝑃𝜃 ∈ Θ.

• Stochastic mis-specified setting (sometimes “PAC setting”):
• 𝑥𝑛 is generated by some model 𝑃, not necessarily in Θ.

• Individual setting:

• 𝑥𝑛 is an arbitrary individual sequence.

Classical Universal Coding: w.r.t a Model Class

A set of models, 𝑃𝜃 𝑥𝑛 , 𝜃 ∈ Θ. “Hypotheses Class”.

• Stochastic setting:

• 𝑥𝑛 is generated by some model 𝑃𝜃 ∈ Θ.

• Stochastic mis-specified setting (sometimes “PAC setting”):
• 𝑥𝑛 is generated by some model 𝑃, not necessarily in Θ.

• Individual setting:

• 𝑥𝑛 is an arbitrary individual sequence.

The Elephant in the room: How to choose the model class?

Universal Coding w.r.t a Model Class Θ

• Criteria:

• Stochastic setting:
• Look for a universal assignment 𝑄 that minimizes the worst case “redundancy”

𝑚𝑖𝑛𝑄𝑚𝑎𝑥𝜃 𝔼𝑃𝜃
log

𝑃𝜃

𝑄
= 𝑚𝑖𝑛𝑄𝑚𝑎𝑥𝜃𝐷(𝑃𝜃| 𝑄

• Stochastic mis-specified setting:
• Even if 𝑃 is known, cannot avoid: 𝑚𝑖𝑛𝜃∈Θ𝐷(𝑃| 𝑃𝜃 = 𝐷(𝑃||𝑃𝜃 𝑃)

𝐷(𝑃| 𝑄 = 𝑚𝑖𝑛𝜃𝐷(𝑃| 𝑃𝜃 + 𝑃 log
𝑃𝜃

𝑄

• Look for:

𝑚𝑖𝑛𝑄𝑚𝑎𝑥𝑃𝔼𝑃 log
𝑃𝜃(P)

𝑄

• Individual setting:
• If 𝑥𝑛 is known, can attain: 𝑚𝑖𝑛𝜃∈Θ[− log 𝑃𝜃 𝑥𝑛] = − log 𝑃𝜃∗(𝑥𝑛) (𝑥𝑛)

• Look for:

𝑚𝑖𝑛𝑄𝑚𝑎𝑥𝑥𝑛 log
𝑃𝜃∗

𝑄

The stochastic setting solution

▪ A Bayesian mixture, with a prior 𝑤 𝜃 over Θ:

 𝑄 𝑥𝑛 = න 𝑤 𝜃 𝑃𝜃 𝑥𝑛 𝑑𝜃

▪ The Redundancy-Capacity Theorem (Gallager, Davisson, others, mid 70’s) :

 min𝑄max𝜃 𝐸𝜃log
𝑃𝜃(𝑥𝑛)

𝑄 𝑥𝑛 = min𝑄max𝜃𝐷(𝑃𝜃||𝑄) =

 = max𝑤(𝜃) 𝐼(Θ; 𝑋𝑛) = 𝐶(Θ → 𝑋𝑛) = 𝐶𝑛(Θ)

The stochastic setting solution

▪ A Bayesian mixture, with a prior 𝑤 𝜃 over Θ:

 𝑄 𝑥𝑛 = න 𝑤 𝜃 𝑃𝜃 𝑥𝑛 𝑑𝜃

▪ The Redundancy-Capacity Theorem (Gallager, Davisson, others, mid 70’s) :

 min𝑄max𝜃 𝐸𝜃log
𝑃𝜃(𝑥𝑛)

𝑄 𝑥𝑛 = min𝑄max𝜃𝐷(𝑃𝜃||𝑄) =

 = max𝑤(𝜃) 𝐼(Θ; 𝑋𝑛) = 𝐶(Θ → 𝑋𝑛) = 𝐶𝑛(Θ)

The solution in the mis-specified setting

• Assume the true 𝑃 = 𝑃𝜙 belongs to a large class Φ. Naturally Θ ⊆ Φ

• The universal probability is a Bayesian mixture over the large class (F-Ployianskiy 2021, Painsky-F 2021):

𝑄 𝑥𝑛 = න

𝜙∈Φ

𝑤 𝜙 𝑃𝜙 𝑥𝑛 𝑑𝜙

 where 𝑤 𝜙 is

arg 𝑚𝑎𝑥𝑤 𝜙 𝐼 Φ; 𝑋𝑛 − න

𝜙∈Φ

𝑤 𝜙 𝐷(𝑃𝜙||𝑃𝜃 𝜙)𝑑𝜙

Intuitively, 𝑤 𝜙 concentrates on the class Θ!

 Denote the “relative redundancy” (Takeuchi-Barron ‘98): 𝐹𝑛 Θ, Φ = 𝑚𝑖𝑛𝑞𝑚𝑎𝑥𝑃𝔼𝑃 log
𝑃𝜃(𝜙)

𝑄

 Clearly:

𝐶𝑛(Θ) ≤ 𝐹𝑛 Θ, Φ

The solution in the mis-specified setting

• Assume the true 𝑃 = 𝑃𝜙 belongs to a large class Φ. Naturally Θ ⊆ Φ

• The universal probability is a Bayesian mixture over the large class (F-Polyianskiy 2021, Painsky-F 2021):

𝑄 𝑥𝑛 = න

𝜙∈Φ

𝑤 𝜙 𝑃𝜙 𝑥𝑛 𝑑𝜙

 where 𝑤 𝜙 is

arg 𝑚𝑎𝑥𝑤 𝜙 𝐼 Φ; 𝑋𝑛 − න

𝜙∈Φ

𝑤 𝜙 𝐷(𝑃𝜙||𝑃𝜃 𝜙)𝑑𝜙

Intuitively, 𝑤 𝜙 concentrates on the class Θ!

 Denote the “relative redundancy” (Takeuchi-Barron ‘98): 𝐹𝑛 Θ, Φ = 𝑚𝑖𝑛𝑞𝑚𝑎𝑥𝑃𝔼𝑃 log
𝑃𝜃(𝜙)

𝑄

 Clearly:

𝐶𝑛(Θ) ≤ 𝐹𝑛 Θ, Φ

The solution in the individual setting

▪ The Normalized Maximum Likelihood (NML) solution (Shtarkov ‘87):

 𝑄 𝑥𝑛 = max𝜃𝑃𝜃 𝑥𝑛 / max𝜃𝑃𝜃 𝑥𝑛 d𝑥𝑛

Worst case regret (individual redundancy):

 Γ𝑛(Θ) = log max𝜃𝑃𝜃 𝑥𝑛 d𝑥𝑛 ≥ 𝐹𝑛 Θ, Φ ≥ 𝐶𝑛 Θ

The solution in the individual setting

▪ The Normalized Maximum Likelihood (NML) solution (Shtarkov ‘87):

 𝑄 𝑥𝑛 = max𝜃𝑃𝜃 𝑥𝑛 / max𝜃𝑃𝜃 𝑥𝑛 d𝑥𝑛

Worst case regret (individual redundancy):

 Γ𝑛(Θ) = log max𝜃𝑃𝜃 𝑥𝑛 d𝑥𝑛 ≥ 𝐹𝑛 Θ, Φ ≥ 𝐶𝑛 Θ

Important Observations/Results

• The universal probabilities on all settings depend on the block size – known horizon

• For “nice” parametric classes with k parameters, asymptotically

 𝐶𝑛 Θ =
𝑘

2
log

𝑛

2𝜋𝑒
+ log Θ

|𝐼 𝜃 | Τ1
2𝑑𝜃 + 𝑜 1

Γ𝑛 Θ =
𝑘

2
log

𝑛

2𝜋
+ log න

Θ

|𝐼 𝜃 | ൗ1
2𝑑𝜃 + 𝑜 1

𝐹𝑛 (Θ, Φ) ≈ 𝐶𝑛

Where 𝐼 𝜃 is the Fisher information matrix

• Γ𝑛 Θ is greater than 𝐶𝑛 Θ since the reference is different!

For “nice” parametric models, a Bayesian mixture , over 𝛩 with’ prior, proportional to |𝐼 𝜃 | Τ1
2

attains the asymptotic performance for both the stochastic-specified and individual setting

The universal probability in this case is horizon independent!

Important Observations/Results

• The universal probabilities on all settings depend on the block size – known horizon

• For “nice” parametric classes with k parameters, asymptotically

 𝐶𝑛 Θ =
𝑘

2
log

𝑛

2𝜋𝑒
+ log Θ

|𝐼 𝜃 | Τ1
2𝑑𝜃 + 𝑜 1

Γ𝑛 Θ =
𝑘

2
log

𝑛

2𝜋
+ log න

Θ

|𝐼 𝜃 | ൗ1
2𝑑𝜃 + 𝑜 1

𝐹𝑛 (Θ, Φ) ≈ 𝐶𝑛

Where 𝐼 𝜃 is the Fisher information matrix

• Γ𝑛 Θ is greater than 𝐶𝑛 Θ since the reference is different!

For “nice” parametric models, a Bayesian mixture , over 𝛩 with Jeffreys’ prior, proportional to |𝐼 𝜃 | Τ1
2

attains an almost optimal asymptotic performance for both the stochastic, mis-specified and individual setting

The universal probability in this case is horizon independent!

Using Probability Calculus

• If a prior 𝑤(𝜃) on the model class is postulated

 A universal probability for prediction:

න
𝜃

𝑤 𝜃 𝑃𝜃 𝑥𝑡−1 𝑑𝜃

𝜃′ 𝑤 𝜃′ 𝑃𝜃′ 𝑥𝑡−1 𝑑𝜃′

𝑃𝜃 𝑥𝑡 = 𝑥 𝑥𝑡−1) = න
𝜃

𝑤 𝜃 𝑥𝑡−1 𝑃𝜃 𝑥𝑡 = 𝑥 𝑥𝑡−1)𝑑𝜃

Essentially, in many cases the prior is not dominant.

Each hypotheses is weighted according to its fitness to the observed past data

Related to exponential weighting in learning theory

Analogous result in “universal portfolios”

More on the Bayesian Solution

• Consider two completely different probability measures: 𝑃1 𝑥 , 𝑃2 𝑥

Suppose 𝐷(𝑃1| 𝑃2 ≫ 1, 𝐷(𝑃2| 𝑃1 ≫ 1

• Consider the Bayesian mixture 𝑄 𝑥 =
1

2
𝑃1 𝑥 + 𝑃2 𝑥

Interestingly: 𝐷(𝑄| 𝑃2 ≤ 1, 𝐷(𝑄| 𝑃2 ≤ 1

Furthermore: − log 𝑄 𝑥 ≤ min
𝑖

[− log 𝑃𝑖(𝑥)] + 1 ∀𝑥

More on the Bayesian Solution

• Consider two completely different probability measures: 𝑃1 𝑥 , 𝑃2 𝑥

Suppose 𝐷(𝑃1| 𝑃2 ≫ 1, 𝐷(𝑃2| 𝑃1 ≫ 1

• Consider the Bayesian mixture 𝑄 𝑥 =
1

2
𝑃1 𝑥 + 𝑃2 𝑥

Interestingly: 𝐷(𝑄| 𝑃1 ≤ 1, 𝐷(𝑄| 𝑃2 ≤ 1

Furthermore: − log 𝑄 𝑥 ≤ min
𝑖

[− log 𝑃𝑖(𝑥)] + 1 ∀𝑥

Example

• Binary data, Bernoulli Hypothesis Class:

𝑃𝜃 𝑥𝑛 = 𝜃𝑛0 (1 − 𝜃)𝑛1

Asymptotically, capacity achieving prior: Dirichlet(Τ1
2) – Jeffreys’ prior

Thus, after observing (𝑛0, 𝑛1): 𝑃𝑈 𝑥𝑛+1 = 0|𝑥𝑛 = 𝑛0+0.5

𝑛+1

In general – intuition – sample the parameter space at ~ ൗ1
𝑛

 resolution

Learning Universally

`Batch’ Supervised Learning

• 𝒙𝑁−1, 𝒚𝑁−1 are the training set

• Predict a new outcome 𝑦𝑁, given a new data sample 𝑥𝑁.

Prediction: 𝑏𝑁 = 𝑃(∙ |𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1)

• The loss ℓ 𝑏𝑁, 𝑦𝑁 = − log 𝑃 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1 is the “test error”.

 The (expected) regret is the “generalization error”

• Stochastic setting: Data and outcome are generated obeying some 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ. Several assumption on 𝑥𝑁.

 Consider the “expected test regret”:

min
𝑞

max
𝜃

𝔼𝑃𝜃
log

𝑃𝜃 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• ‘PAC’ setting: 𝑥𝑁, 𝑦𝑁., according to some unknown distribution 𝑃 𝑥𝑛, 𝑦𝑛 , where 𝑃 𝑦𝑛|𝑥𝑛 is not necessarily in the family.

 PAC learning consider the probability over the training that “expected test regret” is greater than ε. Standard PAC results do not work for log-loss!

 Consider instead the expected test regret”: min
𝑞

max
𝑃

𝔼𝑃 log
𝑃𝜃(𝑃) 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• Individual setting: 𝑥𝑁, 𝑦𝑁 are individual sequences.

 Learn a universal assignment that outperforms any model 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ . Does it makes sense?

`Batch’ Supervised Learning

• 𝒙𝑁−1, 𝒚𝑁−1 are the training set

• Predict a new outcome 𝑦𝑁, given a new data sample 𝑥𝑁.

Prediction: 𝑏𝑁 = 𝑃(∙ |𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1)

• The loss ℓ 𝑏𝑁, 𝑦𝑁 = − log 𝑃 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1 is the “test error”.

 The (expected) regret is the “generalization error”

• Stochastic setting: Data and outcome are generated obeying some 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ. Several assumption on 𝑥𝑁.

 Consider the “expected test regret”:

min
𝑞

max
𝜃

𝔼𝑃𝜃
log

𝑃𝜃 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• ‘PAC’ setting: 𝑥𝑁, 𝑦𝑁., according to some unknown distribution 𝑃 𝑥𝑛, 𝑦𝑛 , where 𝑃 𝑦𝑛|𝑥𝑛 is not necessarily in the family.

 PAC learning consider the probability over the training that “expected test regret” is greater than ε. Standard PAC results do not work for log-loss!

 Consider instead the expected test regret”: min
𝑞

max
𝑃

𝔼𝑃 log
𝑃𝜃(𝑃) 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• Individual setting: 𝑥𝑁, 𝑦𝑁 are individual sequences.

 Learn a universal assignment that outperforms any model 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ . Does it makes sense?

Stochastic setting: Data and outcome are generated obeying some 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ. Several assumption on 𝑥𝑁.

Consider the “expected test regret”:

min
𝑞

max
𝜃

𝔼𝑃𝜃
log

𝑃𝜃 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

`Batch’ Supervised Learning

• 𝒙𝑁−1, 𝒚𝑁−1 are the training set

• Predict a new outcome 𝑦𝑁, given a new data sample 𝑥𝑁.

Prediction: 𝑏𝑁 = 𝑃(∙ |𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1)

• The loss ℓ 𝑏𝑁, 𝑦𝑁 = − log 𝑃 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1 is the “test error”.

 The (expected) regret is the “generalization error”

• Stochastic setting: Data and outcome are generated obeying some 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ. Several assumption on 𝑥𝑁.

 Consider the “expected test regret”:

min
𝑞

max
𝜃

𝔼𝑃𝜃
log

𝑃𝜃 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• ‘PAC’ setting: 𝑥𝑁, 𝑦𝑁., according to some unknown distribution 𝑃 𝑥𝑛, 𝑦𝑛 , where 𝑃 𝑦𝑛|𝑥𝑛 is not necessarily in the family.

 PAC learning consider the probability over the training that “expected test regret” is greater than ε. Standard PAC results do not work for log-loss!

 Consider instead the expected test regret”: min
𝑞

max
𝑃

𝔼𝑃 log
𝑃𝜃(𝑃) 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• Individual setting: 𝑥𝑁, 𝑦𝑁 are individual sequences.

 Learn a universal assignment that outperforms any model 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ . Does it makes sense?

‘PAC’ setting: 𝑥𝑁, 𝑦𝑁 are i.i.d., according to some unknown distribution 𝑃 𝑥𝑛, 𝑦𝑛 , where 𝑃 𝑦𝑛|𝑥𝑛 is not necessarily in the family.
 PAC learning consider the probability over the training that “expected test regret” is greater than ε. Standard PAC results do not work for log-loss!

Consider instead the “mis-specified expected test regret”:

min
𝑞

max
𝑃

𝔼𝑃 log
𝑃𝜃(𝑃) 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

`Batch’ Supervised Learning

• 𝒙𝑁−1, 𝒚𝑁−1 are the training set

• Predict a new outcome 𝑦𝑁, given a new data sample 𝑥𝑁.

Prediction: 𝑏𝑁 = 𝑃(∙ |𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1)

• The loss ℓ 𝑏𝑁, 𝑦𝑁 = − log 𝑃 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1 is the “test error”.

 The (expected) regret is the “generalization error”

• Stochastic setting: Data and outcome are generated obeying some 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ. Several assumption on 𝑥𝑁.

 Consider the “expected test regret”:

min
𝑞

max
𝜃

𝔼𝑃𝜃
log

𝑃𝜃 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• ‘PAC’ setting: 𝑥𝑁, 𝑦𝑁., according to some unknown distribution 𝑃 𝑥𝑛, 𝑦𝑛 , where 𝑃 𝑦𝑛|𝑥𝑛 is not necessarily in the family.

 PAC learning consider the probability over the training that “expected test regret” is greater than ε. Standard PAC results do not work for log-loss!

 Consider instead the expected test regret”: min
𝑞

max
𝑃

𝔼𝑃 log
𝑃𝜃(𝑃) 𝑦𝑁 𝑥𝑁

𝑞 𝑦𝑁 𝑥𝑁; 𝑥𝑁−1, 𝑦𝑁−1

• Individual setting: 𝑥𝑁, 𝑦𝑁 are individual sequences.

 Learn a universal assignment that outperforms any model 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ . Does it makes sense?

Individual setting: 𝑥𝑁 , 𝑦𝑁 are individual sequences.
 Learn a universal assignment that outperforms any model 𝑃𝜃 𝑦𝑁|𝑥𝑁 , 𝜃 ∈ Θ . Does it makes sense?

Let

min over 𝑞, max over 𝑧𝑁+1=(𝑥𝑁+1, 𝑦𝑁+1) of:

 =

Some Results
(Fogel-F ‘18 and after, Vituri-F ‘24)

• Stochastic case:

A Bayesian mixture over Θ with a prior 𝑤(𝜃)

max
𝑤

𝐼(Θ; 𝑌𝑁|𝑌𝑁−1, 𝑋𝑁) ≜ 𝑝𝐶𝑁(Θ) Asymptotically not Jeffreys’; behaves as k/2N for “nice” k-parameters class

• Mis-specified case:

A mixture over the large class Φ with prior 𝑤(𝜙) that concentrates “near” Θ

max
𝑤

𝐼 Φ; 𝑌𝑁 𝑌𝑁−1, 𝑋𝑁 − 𝑤 𝜙 𝐷 𝑃𝜙(𝑦𝑁|𝑥𝑁)||𝑃𝜙 𝜃 𝑦𝑁 𝑥𝑁 ≜ 𝑝𝐹𝑁(Φ, Θ)

• Individual case:

Approximated by the pNML (also cNML): 𝒒(𝒚|𝒙, 𝒙𝑵, 𝒚𝑵) =
𝑷

𝜽 𝒛𝑵,𝒙,𝒚
(𝒚|𝒙; 𝒙𝑵,𝒚𝑵)

σ𝒚′ 𝑷
𝜽 𝒛𝑵,𝒙,𝒚′ (𝒚′|𝒙; 𝒙𝑵,𝑦𝑁)

With regret: 𝑝Γ𝑁(Θ) ≜ log σ𝒚 𝑷𝜽 𝒛𝑵,𝒙,𝒚 (𝒚|𝒙; 𝒙𝑵, 𝒚𝑵)

𝑝𝐶𝑁(Θ) ≤ 𝑝𝐹𝑁(Φ, Θ) ≤ 𝑝Γ𝑁(Θ)

Recent work - 𝑹𝒑𝒆𝒓𝒎 was shown to behave as k/N for “nice” k-parameters class

In recent work - 𝑹𝒑𝒆𝒓𝒎 (for 𝑝Γ𝑁(Θ)) was shown to behave as k/N for “nice” k-parameters class

Role of Training
(Fogel-F 2018, Painsky-F 2021, Rosas et. Al.)

1. The role of training is to focus on a smaller, restricted class Θ𝑟 ⊂ Θ

 Then apply the standard prediction algorithms (in all settings) on Θ𝑟

For example, pNML is a special case, where the restricted class is defined by the
high likelihood of the training data

2. Efficient compression of the training data: overhead f(n), f’(n) -> 0
implies successful prediction of the test sample

An alternative Information Theoretic
Framework to Machine Learning

• Alternative to “PAC” Learning:
Use Capacity instead of VC-Dimension or Radamacher Complexity

Interesting simple example

• Again, binary data, Bernoulli Hypothesis Class:

𝑃𝜃 𝑥𝑛 = 𝜃𝑛0 (1 − 𝜃)𝑛1

Conditional capacity achieving prior can be found numerically:

Thus, after observing (𝑛0, 𝑛1): different from “add-𝛽”. Equivalent 𝛽 is

If the edges (0,1) are neglected, get “add-𝛽” with 𝛽 = 1 + Τ1
6

Large Class of Models

Universality w.r.t a large class of models

• A large class Θ of models may correspond to “unbounded complexity”

• Suppose it can be arranged as a union of simpler classes: ڂ𝑖 Θ𝑖 each
with a universal probability 𝑄𝑖 and complexity 𝐶𝑖 , 𝐹𝑖 or Γ𝑖

• A typical situation is hierarchy of models Θ1 ⊆ Θ2 ⊆ ⋯
• Markov sources of growing order

• Finite-state models with a growing number of states. In this case the class Θ𝑠
of model with 𝑠 states is itself a union: of model classes Θ𝑠 = 𝑖ڂ Θ𝑠,𝑖

Finite State and Markov Models

• Finite state with 𝑆 states:

 The model class is defined by 𝑠0 and the transition function 𝑓:

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑥𝑡

 The model class has 𝑆 |𝑋| parameters defining 𝑃(𝑥|𝑠) .

• Markov model of order 𝑘: 𝑠𝑡 = 𝑥𝑡−1, … , 𝑥𝑡−𝑘. Has |𝒳|𝑘 parameters

FS Complexity of an Individual Sequence
• Lempel-Ziv 78 defined a Finite-State complexity measure of an individual sequence.

• The measure is the codelength (or log-loss) attained by any Finite-State machine of
any size for that (infinite) sequence.

• first, find the best FS model with 𝑆 states for 𝑥𝑛 (including its parameters)

• then, consider the normalized loss and let 𝑛 → ∞

• finally, let 𝑆 → ∞

FS predictability of the (infinite) sequence 𝑥

• This quantity is efficiently achievable by the Lempel-Ziv data compression scheme

• While not as general as Kolmogorov’s complexity, it is computable!

)(min
1

suplimlim)(n

f
fnS

x
n

x
S

LU
F→→

=

set of S-state machines Best model with FSM f

Entropy: Complexity measure in the stochastic case

Claude Elwood Shannon

Andrei Nikolaevich Kolmogorov Ray Solomonoff Gregory Chaitin

Algorithmic complexity of individual sequence

Finite-State complexity of individual sequence

Abraham Lempel Jacob Ziv
Attained by Lempel-Ziv 78 scheme

Lempel-Ziv (LZ) universality

• LZ attains the entropy, if the source is ergodic (stochastic setting), or attains
the FS complexity (individual setting):

 …. by essentially increasing the “model size” as more data is available*

• How fast?
• Slow 𝑂(ൗ1

log 𝑛) convergence

• The reason: the “dictionary” keeps increasing even if the data exhibits a simple model
• Practical methods of adaptive dictionary construction improves the rate!

• Need a method that “learn” the complexity!

* Some may use this approach to explain learning – “scaling laws”

Twice/Multiple/Hierarchical
Universality

Twice Universality

• Model classes with different complexity (different 𝐶𝑖 , 𝐹𝑖 or Γ𝑖)

• The source/explanation comes from a model in one of the classes

• May consider Θ = ڂ Θ𝑖; however, this will lead to a large “redundancy”

• Depending on the data size, take into account Θ𝑖’s that have negligible redundancy.
Consider more classes as more data is available – like in LZ

Proposed Preferred option:
Twice Universality (originally, Ryabko, 1985)
Generalized to Multiple Universality

Twice Universality

• Model classes with different complexity (different 𝐶𝑖 , 𝐹𝑖 or Γ𝑖)

• The source/explanation comes from a model in one of the classes

• Again, may consider Θ = ڂ Θ𝑖; however, this will lead to a large “redundancy”

• Depending on the data size, take into account Θ𝑖’s that have negligible redundancy.
Consider more classes as more data is available – like in LZ

Proposed Preferred option:
Twice Universality (originally, Ryabko, 1985)
Generalized to Multiple Universality

Twice Universality

• Model classes with different complexity (different 𝐶𝑖 , 𝐹𝑖 or Γ𝑖)

• The source/explanation comes from a model in one of the classes

• Again, may consider Θ = ڂ Θ𝑖; however, this will lead to a large “redundancy”

• Depending on the data size, take into account Θ𝑖’s that have negligible redundancy.
Consider more classes as more data is available – like in LZ

Proposed Preferred option:
Twice Universality (originally, Ryabko, 1985)
Generalized to Multiple Universality

Twice Universality

Universal with respect to the choice of the model class!

• Suppose 𝑄𝑖 is the universal probability of the class Θ𝑖

Find a “twice universal” 𝑸 that can represent all the 𝑸𝒊’s

Twice Universality

Universal with respect to the choice of the model class!

• Suppose 𝑄𝑖 is the universal probability of the class Θ𝑖

Find a “twice universal” 𝑸 that can represent all the 𝑸𝒊’s

Seems like a good approach

For example, find 𝐶𝑇𝑈 = min
𝑄

max
𝑖

𝐷(𝑄𝑖 ||𝑄)

 However, might get 𝑪𝑻𝑼 ≫ 𝑪𝒊 Bad…

Twice Universality

Possible Solution for the last: Multiplicative regret. Consider:
log 𝑄

log 𝑄𝑖

• In the individual case: Let 𝑖 𝑥𝑛 = arg max
𝑖

𝑄𝑖(𝑥𝑛)

 Solve: min
𝑄

max
𝑥𝑛

log 𝑄(𝑥𝑛)

log 𝑄𝑖 𝑥𝑛 (𝑥𝑛)

• Solution: 𝑄𝑇𝑊(𝑥𝑛) = 𝑄𝑖(𝑥𝑛)
𝛼 𝑥𝑛 = 𝑄𝑖(𝑥𝑛)

𝛽
𝑥𝑛 𝑄𝑖(𝑥𝑛) 𝑥𝑛

 where 𝛼 ≥ 1 is chosen so that σ𝑥𝑛 𝑄𝑇𝑊(𝑥𝑛) = 1

 Note that − log 𝑄𝑇𝑊 𝑥𝑛 = − log 𝑄𝑖 𝑥𝑛 + −𝛽 log 𝑄𝑖 𝑥𝑛

 The extra loss is promotional to the “universal codelength” of 𝜣𝒊

Twice Universality

Possible Solution for the last: Multiplicative regret. Consider:
log 𝑄

log 𝑄𝑖

• In the individual case: Let 𝑖 𝑥𝑛 = arg max
𝑖

𝑄𝑖(𝑥𝑛)

 Solve: min
𝑄

max
𝑥𝑛

log 𝑄(𝑥𝑛)

log 𝑄𝑖 𝑥𝑛 (𝑥𝑛)

• Solution: 𝑄𝑇𝑊(𝑥𝑛) = 𝑄𝑖(𝑥𝑛)
𝛼 𝑥𝑛 = 𝑄𝑖(𝑥𝑛)

𝛽
𝑥𝑛 𝑄𝑖(𝑥𝑛) 𝑥𝑛

 where 𝛼 ≥ 1 is chosen so that σ𝑥𝑛 𝑄𝑇𝑊(𝑥𝑛) = 1

 Note that − log 𝑄𝑇𝑊 𝑥𝑛 = − log 𝑄𝑖 𝑥𝑛 + −𝛽 log 𝑄𝑖 𝑥𝑛

 The extra loss is proportional to the “universal codelength” of 𝜣𝒊

Yet, a better solution:
Multiple/Hierarchical Universality

• Large 𝑪𝑻𝑾 since there are “too many classes”
• Add another universality layer:
 Three-times universality, multiple universality

• Eventually, in the last universality layer, can make the
extra cost “proportional” to the accumulated complexity

Multiple Universality: Canonical Example

The universal representation of the integers (or the “complexity”):

We wish to represent an integer universally, with number of bits proportional to its binary representation. Range can be all the integers!

Multiple Universality: Canonical Example

The universal representation of the integers (or the “complexity”):

We wish to represent an integer universally, with number of bits proportional to its binary representation. Range can be all the integers!

• Consider the classes [2,3], [4,5,6,7],…. Class Θ𝑖 contains 2𝑖 models.

• Simplest case – each model is deterministic on some value. In this case, the universal probability of each class :

 𝑄𝑖 = 2−𝑖 ⇒ − log 𝑄𝑖 = 𝑖 = log 𝑛 , 𝑛 the corresponding integer

Multiple Universality: Canonical Example

The universal representation of the integers (or the “complexity”):

We wish to represent an integer universally, with number of bits proportional to its binary representation. Range can be all the integers!

• Consider the classes [2,3], [4,5,6,7],…. Class Θ𝑖 contains 2𝑖 models.

• Simplest case – each model is deterministic on some value. In this case, the universal probability of each class :

 𝑄𝑖 = 2−𝑖 ⇒ − log 𝑄𝑖 = 𝑖 = log 𝑛 , 𝑛 the corresponding integer

• It turns out that a multiplicative universal probability should use 𝛼 = 2

 Thus, 𝑄𝑇𝑊 = 2−2𝑖 ⇒ universal code for the integer requires 2 log 𝑛 bits

• With an extra bit to specify the integer 1, get Elias universal representation of the integers

Can repeat the process for “multiple universality” (or “hierarchical universality”). Attain a representation of the integer 𝒌 with 𝑙𝑜𝑔∗ 𝑘 bits

Elias’ Codes

• The basis of the Minimum Description Length (MDL) principle

A universal code of a binary sequence 𝑥𝑛 for the class of 𝑘𝑡ℎ- order Markov model requires:

𝐿𝑘 𝑥𝑛 = 𝐻𝑘(𝑥𝑛) +
2𝑘

2𝑛
log 𝑛 bits/symbol

 where 𝐻𝑘(𝑥𝑛) is the 𝑘𝑡ℎ- order Markovian empirical entropy – ML solution in the class

MDL principle: choose the model that minimizes 𝐿𝑘 𝑥𝑛

• A “twice universal” two-part code (actually 3-part code..)

𝐿𝑇𝑈 𝑥𝑛 = min
𝑘

[𝐿𝑘 𝑥𝑛 + log∗ 𝑘]

• The extra “cost” for not knowing the class is negligible w.r.t the cost of not knowing the model in the class

Non-uniform convergence to the minimal empirical entropy

Markov Models

• More generally - a Bayesian solution with a prior that is inversely
proportional to the class complexity

Twice/Multiple Universality

Practical success of Twice Universal Coding:
• Context-tree weighting (CTW, Willems et. al, 1996)
• Prediction by partial matching (many authors)
• Plug-in: A universal finite memory source (Weinberger, Rissanen, F – 1995)

Underlying model classes: variable order Markov models

https://scholar.google.co.il/scholar?cluster=12046575662556797114&hl=en&as_sdt=2005&sciodt=0,5

• Unifilar models:

Variable Order Markov Models
(unifilar sources)

More on CTW

Weight all possible sub-trees of context
to generate the multiple universal probability

Effective weight of a tree with 𝑆 leaves: 2−(2𝑆−1)

Resulting extra redundancy 2𝑆 − 1

Comparable (and smaller) than the redundancy
of 𝑄𝑡𝑟𝑒𝑒 of Τ𝑠

2 log 𝑛𝑆

Recently extended, analyzed and made more efficient
computationally – Kontoyiannis 2020

More on CTW

Weight all possible sub-trees of context
to generate the multiple universal probability

Effective weight of a tree with 𝑆 leaves: 2−(2𝑆−1)

Resulting extra redundancy 2𝑆 − 1

Comparable (and smaller) than the redundancy
of 𝑄𝑡𝑟𝑒𝑒 of Τ𝑠

2 log 𝑛𝑆

Recently extended, analyzed and made more efficient
computationally – Kontoyiannis 2020

Multiple Universality Interpretation

Large Alphabet

• Large alphabet 𝑑 ≫ 𝑛 . 𝑑 may even be unknown or infinite..

• Hierarchy according to the alphabet size:

 log∗ 𝑘 + log 𝑑
𝑘

+
𝑘

2
log 𝑛 + − log 𝑝𝜃1,𝜃2,…,𝜃𝑘

(𝑦𝑛)

 works for 𝑘 ≪ 𝑛

In the predictive distribution 𝑑 disappear; get Ristad’s law of succession!

 One consequence – predictive probability of “unseen” symbol:

𝑘(𝑘+1)

𝑛2+𝑛+2𝑘

Large Alphabet (2)

• Large alphabet 𝑑 ≫ 𝑛 . 𝑑 may even be unknown or infinite..

• Hierarchy according to the empirical counts:

 log 𝑃𝑎𝑟𝑡 𝑛 + log 𝑑
𝑑1. . . 𝑑𝑛

 + − log 𝑝𝑒𝑚𝑝(𝑦𝑛)

In the predictive distribution 𝑑 disappear; get close to Good-Turing law of succession!

 A consequence – predictive probability of “unseen” symbol:

 ~
𝑑1

𝑛(𝑑−𝑘)

This hierarchy weights more low entropy empirical distribution,
 while the previous hierarchy weights more small alphabet size

Perceptrons (Linear Separators)

Lower dimensional separators
can replace higher dimensional
with large margin

Multiple universality
over the dimension

Consider the general “model class”:

𝑝𝜃 𝑦 𝑥 = 𝑓(𝑦; 𝜃𝑇𝑥

 where 𝑓(∙) is a general stochastic function and 𝜃, 𝑥 are 𝑑-dimensional
vectors, 𝑑 ≫ 𝑛 can be very large

This case include perceptrons, linear regression, logistic regression and
many more model. OVERPARAMETERIZED!

Perceptrons and other Linear Models:
An alternative Hierarchy

The embedded model classes: All subsets of 𝜃1, 𝜃2, … . , 𝜃𝑑

Arrange the classes according to their cardinality:

𝑑 classes with a single parameter, 𝑑
2

 with 2 parameters, and so on..

A multiple-part description for this hierarchy:

Specify 𝐾 the number of parameters, then which class of 𝐾 parameters, then the 𝐾 parameters and
finally the data given this description. This requires:

log 𝐾∗ + log 𝑑
𝐾

+
𝐾

2
log 𝑛 + − log 𝑝𝜃𝑖1 ,𝜃𝑖2 ,…,𝜃𝑖𝐾

(𝑦𝑛 |𝑥𝑛)

A slightly shorter “codelength” will be obtained by the appropriate mixtures

Perceptrons and other Linear Models:
An alternative Hierarchy

Linear Regression Example: Polynomial fit

Multiple Universality Linear Regression

With Random Feature vectors:

Need computationally efficient (recursive?) algorithm!

Are Deep Neural
Networks Hierarchically
Universal?

Need to find the right
hierarchy structure..

Sparsity of layer inputs,
after the ReLU non-linearity

Manifolds of various
dimensions

.. and so on

A large Network as a Union of Small Networks

A Large Network An embedded smaller Network

• Specify the number of nodes in each layer;
• Then, specify a small networks with these number of nodes;
• Then specify the parameters associated with this smaller network;
• Finally encode the data given this description. This requires:

 log 𝑑𝑖 + Σ log
𝑑𝑖

𝑑𝑖
∗ + Σ

𝑑𝑖
∗𝑑𝑖−1

∗

2
log 𝑛 + − log 𝑝𝑠𝑚𝑎𝑙𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝑦𝑛 |𝑥𝑛)

With fully connected network do not care about the node choice. Do not need 2nd term

Experiment with Hierarchy of Small Networks

• Given a large networks. Large hypothesis class

• Randomly select sub-networks of various “capacities”. Total number
of parameters are equivalent to the large network size

• Approximate the universal predictor of each sub-network by the ERM
with SGD

• Perform “multiple universality” over these “universal predictors”:
• Average the predictors – ensemble averaging, however:

Weights reflect both –

• The complexity of the sub-network: larger networks are penalized

• An exponential weighting according to the fitness to the training

Results
of parameters Large model 266610
Large model - Train Loss=0.0033 Test Loss=0.2460
###############################
Prob = 1, pool of models = 595
###############################
--SMALLEST MODELS ---------------------

Num of params = [4015, 4095, 4175, 4255, 4335, 4415, 4495, 4575, 4655, 4735, 4815,
4895, 4975, 5055, 5135, 5215, 5295, 5375, 5455, 7965, 8070, 8175, 8280, 8385, 8490,
8595, 8700, 8805, 8910, 9015, 9120, 9225, 9330, 9435, 9540, 9645, 9750, 9855]
Train Loss = [0.3954, 0.2753, 0.24759, 0.51102, 0.8354, 0.25432, 0.23593, 0.36226,
0.24435, 0.23079, 0.235, 0.2334, 0.23162, 0.23547, 0.23665, 0.22929, 0.22265,
0.24359, 0.23716, 0.19122, 0.12353, 0.16399, 0.12197, 0.11127, 0.08941, 0.09461,
0.15591, 0.15254, 0.09045, 0.09315, 0.08318, 0.09299, 0.08623, 0.10994, 0.0675,
0.06373, 0.06295, 0.06052]
Test Loss = [0.43543, 0.31145, 0.2936, 0.56065, 0.90121, 0.31526, 0.29546, 0.40616,
0.29731, 0.29901, 0.30029, 0.29228, 0.29415, 0.3073, 0.31207, 0.2949, 0.3018,
0.33312, 0.31027, 0.25704, 0.20413, 0.23476, 0.2006, 0.20284, 0.17873, 0.18968,
0.23554, 0.23159, 0.20639, 0.20361, 0.20059, 0.19853, 0.18341, 0.20173, 0.19246,
0.21829, 0.20162, 0.20023]
Eval Loss = [0.3819, 0.2537, 0.2416, 0.4781, 0.804, 0.2628, 0.2276, 0.351, 0.2427,
0.2365, 0.2361, 0.2325, 0.2461, 0.2311, 0.2418, 0.2333, 0.2282, 0.2601, 0.248, 0.1948,
0.1741, 0.1959, 0.1756, 0.1661, 0.1574, 0.1695, 0.1877, 0.1854, 0.1622, 0.1577, 0.1662,
0.187, 0.1626, 0.172, 0.1525, 0.1459, 0.1481, 0.1565]

Testing AVERAGED Ensemble of 38 models:
Test: Loss: 0.1425, Accuracy: 7167/7500 (95.56%)

Testing WEIGHTED AVERAGED Ensemble of 38 models:
Test: Loss: 0.1409, Accuracy: 7189/7500 (95.85%)

Yet, there is still an
Elephant in the room:

What is the “Hierarchy”?
Is there a “right” hierarchy?

This might be undecidable

It definitely may require
enormous computation

THANKS!

	Slide 1: Addressing Large Models: Multiple and Hierarchical Universality Meir Feder School of Electrical Engineering Tel-Aviv University
	Slide 2: Two Messages
	Slide 3: Universality Model Independent Schemes Yet, Strive to Attain Optimal, Model dependent, Performance
	Slide 4: An over 30 years Journey
	Slide 5: Inspiration and Mentors
	Slide 6: Lossless Source Coding Online Prediction with Log-Loss
	Slide 7: The source coding problem
	Slide 8: Universal source coding
	Slide 9: The concept of Universal Probability
	Slide 10: The equivalence of coding and on-line prediction with log-loss
	Slide 11: The equivalence of coding and on-line prediction with log-loss
	Slide 12: GENERATIVE AI MODELS LIKE GPT… ARE LEARNED BY SUCH ON-LINE PREDICTION
	Slide 13: Universal Prediction with General Loss
	Slide 14: Universal Prediction with General Loss
	Slide 15: Universality with Respect to a Given Model Class
	Slide 16: Classical Universal Coding: w.r.t a Model Class
	Slide 17: Classical Universal Coding: w.r.t a Model Class
	Slide 18: Universal Coding w.r.t a Model Class cap theta
	Slide 19: The stochastic setting solution
	Slide 20: The stochastic setting solution
	Slide 21: The solution in the mis-specified setting
	Slide 22: The solution in the mis-specified setting
	Slide 23: The solution in the individual setting
	Slide 24: The solution in the individual setting
	Slide 25: Important Observations/Results
	Slide 26: Important Observations/Results
	Slide 27: Using Probability Calculus
	Slide 28: More on the Bayesian Solution
	Slide 29: More on the Bayesian Solution
	Slide 30: Example
	Slide 31: Learning Universally
	Slide 32: `Batch’ Supervised Learning
	Slide 33: `Batch’ Supervised Learning
	Slide 34: `Batch’ Supervised Learning
	Slide 35: `Batch’ Supervised Learning
	Slide 36: Some Results (Fogel-F ‘18 and after, Vituri-F ‘24)
	Slide 37: Role of Training (Fogel-F 2018, Painsky-F 2021, Rosas et. Al.)
	Slide 38: An alternative Information Theoretic Framework to Machine Learning
	Slide 39: Interesting simple example
	Slide 40: Large Class of Models
	Slide 41: Universality w.r.t a large class of models
	Slide 42: Finite State and Markov Models
	Slide 43: FS Complexity of an Individual Sequence
	Slide 44
	Slide 45: Lempel-Ziv (LZ) universality
	Slide 46: Twice/Multiple/Hierarchical Universality
	Slide 47: Twice Universality
	Slide 48: Twice Universality
	Slide 49: Twice Universality
	Slide 50: Twice Universality
	Slide 51: Twice Universality
	Slide 52: Twice Universality
	Slide 53: Twice Universality
	Slide 54: Yet, a better solution: Multiple/Hierarchical Universality
	Slide 55: Multiple Universality: Canonical Example
	Slide 56: Multiple Universality: Canonical Example
	Slide 57: Multiple Universality: Canonical Example
	Slide 58: Elias’ Codes
	Slide 59: Markov Models
	Slide 60: Twice/Multiple Universality
	Slide 61: Variable Order Markov Models (unifilar sources)
	Slide 62: More on CTW
	Slide 63: More on CTW
	Slide 64: Multiple Universality Interpretation
	Slide 65: Large Alphabet
	Slide 66: Large Alphabet (2)
	Slide 67: Perceptrons (Linear Separators)
	Slide 68: Perceptrons and other Linear Models: An alternative Hierarchy
	Slide 69: Perceptrons and other Linear Models: An alternative Hierarchy
	Slide 70
	Slide 71: Multiple Universality Linear Regression
	Slide 72
	Slide 73: A large Network as a Union of Small Networks
	Slide 74: Experiment with Hierarchy of Small Networks
	Slide 75: Results
	Slide 76
	Slide 77: THANKS!

