Addressing Large Models:

Multiple and Hierarchical Universality

Meir Feder School of Electrical Engineering Tel-Aviv University

Two Messages

• An information theoretic framework to machine learning:

Under the assumption of a given "Hypothesis Class"

- Replace the "PAC" Criterion
- Suggests information theoretic learnability measures
- Based on universal source coding, universal prediction
- A proposal (with a conjecture) for the "over-parameterized" case where the hypothesis class is not given, or it is ``too large"

Multiple and hierarchical universality

- Learn both a model and a class (or hierarchy of classes)
- Learnability with non uniform convergence
- Examples of success from universal source coding. For other learning problems
- The essence of modern learning: Why DNN, transformers and similar can "explain", "generalize. Open questions..

Universality

Model Independent Schemes

Yet, Strive to Attain Optimal, Model dependent, Performance

An over 30 years Journey

- Many works in the 90's with Neri Merhav: universal coding and prediction.
 Later, universal channel decoding
- Amos Lapidoth on universal decoding
- Nadav Shulman's less known work on rateless codes for universal channel and joint source/channel coding
- Yuval Lomnitz on universal channel coding with feedback, individual channels
- Many students during the years: Ofer Shayevitz, Nir Weinberger, Eado Meron, Amir Ingber, Elona Erez, Ronen Dar, Zvi Reznic, Nir Elkayam, others
- Recent works on universal learning: Yaniv Fogel, Koby Bibas, Shachar Shayovitz, Uriya Pesso, Adi Hendel
- Re-examining aspects of universal coding/prediction with Yury Polyianskiy, Amichai Painsky

Inspiration and Mentors

Jorma Rissanen

Jacob Ziv

Fom Cover

Lossless Source Coding

Online Prediction with Log-Loss

The source coding problem

- Encode a source symbol x or more generally a source sequence $x = x^n = x_1, ..., x_n$
- Existent and known source probability $P(\underline{x})$:
 - With Huffman or arithmetic coding: encode each source sequence by - log P(x) bits (within 1-2 bits)
 - Expected codelength per source symbol (within $O\left(\frac{1}{n}\right)$ bits): **The entropy**

What can be done when *P* is unknown or even nonexistent?

Universal source coding

- Suppose a "coding probability" $Q(\underline{x})$.
 - Any source coder may correspond to a probability assignment with

 $Q(\underline{x}) = 2^{-L(\underline{x})}$, $L(\underline{x})$ the codelength*

- With true *P* the expected codelength: H(P) + D(P||Q)
- How to choose *Q* optimally? When *P* is unknown or even non-existent

* satisfying Kraft's inequality with equality

The concept of Universal Probability

A single, universal $Q(\underline{x})$

Can be used no matter what $P(\underline{x})$ is, even if it is non-existent!

- 1. Universality w.r.t a model class
- 2. Universality w.r.t a very large class of models (all ergodic sources..)
- 3. Twice/Multiple/Hierarchical universality

The equivalence of coding and on-line prediction with log-loss

- Data Compression => Prediction:
 - A coding probability (possibly universal) $Q(\underline{x}) = 2^{-L(\underline{x})}$, $L(\underline{x})$ the codelength
 - Can use this probability assignment for prediction by the chain rule: $Q(\underline{x}) = \prod_{t=1}^{n} Q(x_t | x^{t-1})$
 - To predict the symbol x_t given the past observation x^{t-1} simply use:

$$b_t = Q(x_t = x \mid x^{t-1}) = \frac{Q(x^{t-1}x)}{Q(x^{t-1})} = \frac{\sum_{x_{t+1}^n} Q(x^{t-1}x_{t+1}^n)}{\sum_{x_t^n} Q(x^{t-1}x_t^n)}$$

• The accumulated log-loss over the sequence <u>x</u> is the codelength, $-\log Q(\underline{x})$

The equivalence of coding and on-line prediction with log-loss

- Prediction => Data compression:
 - $x_1 x_2 \dots x_n$ is the data to encode, from a finite alphabet A
 - The (deterministic) action b_t is a probability vector assigned to x_t $b_t = \{q_t(. | x_1 x_2 ... x_{t-1})\}$
 - The loss: l(b_t, x_t) = log q_t(x_t | x₁ x₂ ... x_{t-1}) is the ideal codelength for encoding X_t.
 Given the assigned distribution, an arithmetic coder can generate a code word with ideal code length l(b_t, x_t)
 - The accumulated loss is the total code length. It is also log of the probability assigned to the entire sequence $x_1 x_2 \dots x_n$, i.e,

$$-\log Q(x^n) = -\log \prod_{t=1}^n q_t(x_t | x^{t-1}) = -\sum_{t=1}^n \log q_t(x_t | x^{t-1})$$

GENERATIVE AI MODELS LIKE GPT...

ARE LEARNED BY SUCH ON-LINE PREDICTION

Universal Prediction with General Loss

- By coding (or prediction with log-loss) generate $q(x_{t+1}|x^t)$
- Apply "optimal decision" using the universal predicted probability?

$$\widehat{b}_{t+1} = \arg\min_{b} \mathbb{E}_{q(x_{t+1}|x^{t})} \ell(b, x)$$

Universal Prediction with General Loss

- By coding (or prediction with log-loss) generate $q(x_{t+1}|x^t)$
- Apply "optimal decision" using the universal predicted probability?

$$\hat{b}_{t+1} = \arg\min_{b} \mathbb{E}_{q\left(x_{t+1} | x^t\right)} \ell(b, x)$$

Not always!

For example, for 0-1 loss need to "randomize" decision (F-Merhav-Gutman 92)

• General Solution: Follow the "Perturbed Probability" (F-Lomnitz, 2013)

Universality with Respect to a Given Model Class

Classical Universal Coding: w.r.t a Model Class

A set of models, $\{P_{\theta}(x^n)\}, \theta \in \Theta$. "Hypotheses Class".

- Stochastic setting:
 - x^n is generated by some model $P_{\theta} \in \Theta$.
- Stochastic mis-specified setting (sometimes "PAC setting"):
 - x^n is generated by some model *P*, not necessarily in Θ .
- Individual setting:
 - x^n is an arbitrary individual sequence.

Classical Universal Coding: w.r.t a Model Class

A set of models, $\{P_{\theta}(x^n)\}, \theta \in \Theta$. "Hypotheses Class".

- Stochastic setting:
 - x^n is generated by some model $P_{\theta} \in \Theta$.
- Stochastic mis-specified setting (sometimes "PAC setting"):
 - x^n is generated by some model *P*, not necessarily in Θ .
- Individual setting:
 - x^n is an arbitrary individual sequence.

The Elephant in the room: How to choose the model class?

Universal Coding w.r.t a Model Class Θ

Criteria:

- Stochastic setting:
 - Look for a universal assignment Q that minimizes the worst case "redundancy"

$$min_Q max_{\theta} \mathbb{E}_{P_{\theta}} \log \frac{P_{\theta}}{Q} = min_Q max_{\theta} D(P_{\theta} ||Q)$$

- Stochastic mis-specified setting:
 - Even if *P* is known, cannot avoid: $min_{\theta \in \Theta} D(P||P_{\theta}) = D(P||P_{\theta(P)})$

$$D(P||Q) = min_{\theta}D(P||P_{\theta}) + \sum P\log\frac{P_{\theta}}{Q}$$

• Look for:

$$min_Q max_P \mathbb{E}_P \log rac{P_{\theta(\mathrm{P})}}{Q}$$

- Individual setting:
 - If x^n is known, can attain: $\min_{\theta \in \Theta} [-\log P_{\theta}(x^n)] = -\log P_{\theta^*(x^n)}(x^n)$
 - Look for:

$$min_Q max_{x^n} \log \frac{P_{\theta*}}{Q}$$

The stochastic setting solution

• A Bayesian mixture, with a prior $w(\theta)$ over Θ :

$$Q(x^n) = \int w(\theta) P_{\theta}(x^n) d\theta$$

The Redundancy-Capacity Theorem (Gallager, Davisson, others, mid 70's):

$$\min_{Q} \max_{\theta} E_{\theta} \log \frac{P_{\theta}(x^{n})}{Q(x^{n})} = \min_{Q} \max_{\theta} D(P_{\theta} ||Q) =$$

 $= \max_{w(\theta)} I(\Theta; X^n) = C(\Theta \to X^n) = C_n(\Theta)$

The stochastic setting solution

• A Bayesian mixture, with a prior $w(\theta)$ over Θ :

$$Q(x^n) = \int w(\theta) P_{\theta}(x^n) d\theta$$

The Redundancy-Capacity Theorem (Gallager, Davisson, others, mid 70's):

$$\min_{Q} \max_{\theta} E_{\theta} \log \frac{P_{\theta}(x^{n})}{Q(x^{n})} = \min_{Q} \max_{\theta} D(P_{\theta} ||Q) =$$

$$= \max_{W(\theta)} I(\Theta; X^n) = C(\Theta \to X^n) = C_n(\Theta)$$

strong version: Rissanen, F-Merhav
 C_n is essentially the minimal regret for almost all Θ

The solution in the mis-specified setting

• Assume the true $P = P_{\phi}$ belongs to a large class Φ . Naturally $\Theta \subseteq \Phi$

• The universal probability is a Bayesian mixture over the large class (F-Ployianskiy 2021, Painsky-F 2021):

$$Q(x^n) = \int_{\phi \in \Phi} w(\phi) P_{\phi}(x^n) d\phi$$

where $w(\phi)$ is

$$\arg\max_{w(\phi)}\left[I(\Phi;X^n) - \int_{\phi\in\Phi} w(\phi) D(P_{\phi}||P_{\theta(\phi)})d\phi\right]$$

Intuitively, $w(\phi)$ concentrates on the class Θ !

Denote the "relative redundancy" (Takeuchi-Barron '98):
$$F_n(\Theta, \Phi) = min_q max_P \mathbb{E}_P \log \frac{P_{\theta(\phi)}}{Q}$$

Clearly:

$$C_n(\Theta) \leq F_n(\Theta, \Phi)$$

The solution in the mis-specified setting

• Assume the true $P = P_{\phi}$ belongs to a large class Φ . Naturally $\Theta \subseteq \Phi$

• The universal probability is a Bayesian mixture over the large class (F-Polyianskiy 2021, Painsky-F 2021):

$$Q(x^n) = \int_{\phi \in \Phi} w(\phi) P_{\phi}(x^n) d\phi$$

where $w(\phi)$ is

$$\arg \max_{w(\phi)} \left[I(\Phi; X^n) - \int_{\phi \in \Phi} w(\phi) D(P_{\phi} || P_{\theta(\phi)}) d\phi \right]$$

Intuitively, $w(\phi)$ concentrates on the class Θ !

Denote the "relative redundancy" (Takeuchi-Barron '98):

Clearly:

):
$$F_n(\Theta, \Phi) = min_q max_P \mathbb{E}_P \log \frac{P_{\Theta(\Phi)}}{Q}$$

 $C_n(\Theta) \leq F_n(\Theta, \Phi) \operatorname{strong version} (\operatorname{strong lower bound) can be stated:
 $G_n(\Theta) \leq F_n(\Theta, \Phi) \operatorname{strong version} (\operatorname{strong lower bound} (\operatorname{strong lo$$

The solution in the individual setting

The Normalized Maximum Likelihood (NML) solution (Shtarkov '87):

 $Q(x^n) = \max_{\theta} P_{\theta}(x^n) / \int \max_{\theta} P_{\theta}(x^n) \, dx^n$

Worst case regret (individual redundancy):

 $\Gamma_n(\Theta) = \log \int \max_{\theta} P_{\theta}(x^n) \, \mathrm{d} x^n \ge F_n(\Theta, \Phi) \ge C_n(\Theta)$

The solution in the individual setting

The Normalized Maximum Likelihood (NML) solution (Shtarkov '87):

 $Q(x^n) = \max_{\theta} P_{\theta}(x^n) / \int \max_{\theta} P_{\theta}(x^n) \, dx^n$

Worst case regret (individual redundancy):

 $\Gamma_{n}(\Theta) = \log \int \max_{\theta} P_{\theta}(x^{n}) \, dx^{n} \ge F_{n}(\Theta, \Phi) \ge C_{n}(\Theta)$ $\overset{\text{Weinberger-Merhav-F can be stated:}}{\underset{Only \text{ for a small fraction of } \Theta, B(\Theta), \text{ the fraction of } Merhav = n \text{ individual}}$

Important Observations/Results

- The universal probabilities on all settings depend on the block size known horizon
- For "nice" parametric classes with k parameters, asymptotically

$$C_n(\Theta) = \frac{k}{2} \log \frac{n}{2\pi e} + \log \int_{\Theta} |I(\theta)|^{1/2} d\theta + o(1)$$

$$\Gamma_n(\Theta) = \frac{k}{2} \log \frac{n}{2\pi} + \log \int_{\Theta} |I(\theta)|^{1/2} d\theta + o(1)$$

 $F_n(\Theta, \Phi) \approx C_n$

Where $I(\theta)$ is the Fisher information matrix

• $\Gamma_n(\Theta)$ is greater than $C_n(\Theta)$ since the reference is different!

Important Observations/Results

- The universal probabilities on all settings depend on the block size known horizon
- For "nice" parametric classes with k parameters, asymptotically

$$C_n(\Theta) = \frac{k}{2} \log \frac{n}{2\pi e} + \log \int_{\Theta} |I(\theta)|^{1/2} d\theta + o(1)$$

$$\Gamma_n(\Theta) = \frac{k}{2} \log \frac{n}{2\pi} + \log \int_{\Theta} |I(\theta)|^{1/2} d\theta + o(1)$$

 $F_n(\Theta, \Phi) \approx C_n$

Where $I(\theta)$ is the Fisher information matrix

• $\Gamma_n(\Theta)$ is greater than $C_n(\Theta)$ since the reference is different!

For "nice" parametric models, a Bayesian mixture, over Θ with Jeffreys' prior, proportional to $|I(\theta)|^{1/2}$ attains an almost optimal asymptotic performance for both the stochastic, mis-specified and individual setting

The universal probability in this case is horizon independent!

Using Probability Calculus

• If a prior $w(\theta)$ on the model class is postulated

A universal probability for prediction:

$$\int_{\theta} \frac{w(\theta)P_{\theta}(x^{t-1})d\theta}{\int_{\theta'} w(\theta')P_{\theta'}(x^{t-1})d\theta'} P_{\theta}(x_t = x|x^{t-1}) = \int_{\theta} w(\theta|x^{t-1})P_{\theta}(x_t = x|x^{t-1})d\theta$$

Essentially, in many cases the prior is not dominant.

Each hypotheses is weighted according to its fitness to the observed past data

Related to **exponential weighting** in learning theory

Analogous result in "universal portfolios"

More on the Bayesian Solution

• Consider two completely different probability measures: $P_1(\underline{x})$, $P_2(\underline{x})$

Suppose $D(P_1||P_2) \gg 1$, $D(P_2||P_1) \gg 1$

• Consider the Bayesian mixture $Q(\underline{x}) = \frac{1}{2} \left(P_1(\underline{x}) + P_2(\underline{x}) \right)$

More on the Bayesian Solution

• Consider two completely different probability measures: $P_1(\underline{x})$, $P_2(\underline{x})$

Suppose $D(P_1||P_2) \gg 1$, $D(P_2||P_1) \gg 1$

• Consider the Bayesian mixture $Q(\underline{x}) = \frac{1}{2} \left(P_1(\underline{x}) + P_2(\underline{x}) \right)$

Interestingly: $D(Q||P_1) \le 1$, $D(Q||P_2) \le 1$

Furthermore: $-\log Q(\underline{x}) \le \min_{i} [-\log P_{i}(\underline{x})] + 1 \quad \forall \underline{x}$

Example

• Binary data, Bernoulli Hypothesis Class:

$$P_{\theta}(x^n) = \theta^{n_0} (1-\theta)^{n_1}$$

Asymptotically, capacity achieving prior: Dirichlet(1/2) - Jeffreys' prior

Thus, after observing
$$(n_0, n_1)$$
: $P_U(x_{n+1} = 0 | x^n) = \frac{n_0 + 0.5}{n+1}$

In general – intuition – sample the parameter space at $\sim 1/\sqrt{n}$ resolution

Learning Universally

- x^{N-1} , y^{N-1} are the training set
- Predict a new outcome y_N , given a new data sample x_N .

Prediction: $b_N = P(\cdot | x_N; x^{N-1}, y^{N-1})$

• The loss $\ell(b_N, y_N) = -\log P(y_N | x_N; x^{N-1}, y^{N-1})$ is the "test error".

The (expected) regret is the "generalization error"

• x^{N-1} , y^{N-1} are the training set

• Predict a new outcome y_N , given a new data sample x_N .

Prediction: $b_N = P(\cdot | x_N; x^{N-1}, y^{N-1})$

• The loss $\ell(b_N, y_N) = -\log P(y_N | x_N; x^{N-1}, y^{N-1})$ is the "test error".

The (expected) regret is the "generalization error"

Stochastic setting: Data and outcome are generated obeying some $P_{\theta}(y^N | x^N)$, $\theta \in \Theta$. Several assumption on x^N .

Consider the "expected test regret":

$$\min_{q} \max_{\theta} \mathbb{E}_{P_{\theta}} \log \frac{P_{\theta}(y_N | x_N)}{q(y_N | x_N; x^{N-1}, y^{N-1})}$$

• x^{N-1} , y^{N-1} are the training set

• Predict a new outcome y_N , given a new data sample x_N .

Prediction: $b_N = P(\cdot | x_N; x^{N-1}, y^{N-1})$

• The loss $\ell(b_N, y_N) = -\log P(y_N | x_N; x^{N-1}, y^{N-1})$ is the "test error".

The (expected) regret is the "generalization error"

'PAC' setting: x^N , y^N are i.i.d., according to some unknown distribution $P(x^n, y^n)$, where $P(y^n|x^n)$ is not necessarily in the family. PAC learning consider the probability over the training that **"expected test regret"** is greater than ε . **Standard PAC results do not work for log-loss!**

Consider instead the "mis-specified expected test regret":

$$\min_{q} \max_{P} \mathbb{E}_{P} \log \frac{P_{\theta(P)}(y_{N}|x_{N})}{q(y_{N}|x_{N};x^{N-1},y^{N-1})}$$

• x^{N-1} , y^{N-1} are the training set

• Predict a new outcome y_N , given a new data sample x_N .

Prediction: $b_N = P(\cdot | x_N; x^{N-1}, y^{N-1})$

• The loss $\ell(b_N, y_N) = -\log P(y_N | x_N; x^{N-1}, y^{N-1})$ is the "test error".

The (expected) regret is the "generalization error"

Individual setting: x^N, y^N are individual sequences. Learn a universal assignment that outperforms any model $P_{\theta}(y^N | x^N), \theta \in \Theta$. **Does it makes sense?**

 $\hat{\theta}(z^N, x, y) = \arg\max_{\theta} p_{\theta}(y^N, y | x^N, x) = \arg\max_{\theta} \left[p_{\theta}(y | x) \prod_{t=1}^N p_{\theta}(y_t | x_t) \right]$

min over *q*, max over $z^{N+1}=(x^{N+1}, y^{N+1})$ of:

$$R_{perm}(q, z^{N+1}) = \frac{1}{(N+1)!} \sum_{\tilde{z}^{N+1} = perm(z^{N+1})} \log\left(\frac{p_{\hat{\theta}(z^{N+1})}(\tilde{y}_{N+1}|\tilde{x}_{N+1})}{q(\tilde{y}_{N+1}|\tilde{x}_{N+1}; \tilde{z}^{N})}\right) = R_{LOO}(q, z^{N+1}) = \frac{1}{N+1} \sum_{t=1}^{N+1} \log\left(\frac{p_{\hat{\theta}(z^{N+1})}(y_{t}|x_{t})}{q(y_{t}|x_{t}; z^{(N+1) \setminus t})}\right)$$

Some Results (Fogel-F '18 and after, Vituri-F '24)

Stochastic case:

•

٠

٠

A Bayesian mixture over Θ with a prior $w(\theta)$

 $\max_{X} I(\Theta; Y_N | Y^{N-1}, X^N) \triangleq pC_N(\Theta)$ Asymptotically not Jeffreys'; behaves as k/2N for "nice" k-parameters class

Mis-specified case:

A mixture over the large class Φ with prior $w(\phi)$ that concentrates "near" Θ

$$\max_{w} \left[I(\Phi; Y_N | Y^{N-1}, X^N) - \sum w(\phi) D\left(P_{\phi}(y_N | x_N) | | P_{\phi(\theta)}(y_N | x_N) \right) \right] \triangleq pF_N(\Phi, \Theta)$$

Individual case:

Approximated by the pNML (also cNML): $q(y|x, x^N, y^N) = \frac{P_{\theta(z^N, x, y)}(y|x; x^N, y^N)}{\sum_{y'} P_{\theta(z^N, x, y')}(y'|x; x^N, y^N)}$

With regret: $p\Gamma_N(\Theta) \triangleq \log \sum_y P_{\theta(z^N, x, y)}(y|x; x^N, y^N)$

$pC_N(\Theta) \le pF_N(\Phi,\Theta) \le p\Gamma_N(\Theta)$

In recent work - R_{perm} (for $p\Gamma_N(\Theta)$) was shown to behave as k/N for "nice" k-parameters class
Role of Training

(Fogel-F 2018, Painsky-F 2021, Rosas et. Al.)

1. The role of training is to focus on a smaller, restricted class $\Theta_r \subset \Theta$

Then apply the standard prediction algorithms (in all settings) on Θ_r

For example, pNML is a special case, where the restricted class is defined by the high likelihood of the training data

2. Efficient compression of the training data: overhead f(n), f'(n) -> 0 implies successful prediction of the test sample

An alternative Information Theoretic Framework to Machine Learning

• Alternative to "PAC" Learning:

Use Capacity instead of VC-Dimension or Radamacher Complexity

It turns out that $I(Y^N; \theta | x^N)$ may be rather easy to bound:

- Consider hypotheses classes that first assign x into one of two groups, and then use a different probability $p_j(y)$ for each group.
- Assume that the VC dimension of the partitions into groups is some finite *d*. Using Sauer's lemma, we can bound the number of possible partitions by $\left(\frac{eN}{d}\right)^d$.
- The number of bits needed to represent the best partitions is thus bounded by $d \log(eN)$.
- The number of bits needed to represent the best probability assignments, assuming binary y, is just bounded by $2\log(N)$.
- Thus, we get $R \leq \frac{d \log(eN) + 2 \log(N)}{N}$.

Interesting simple example

• Again, binary data, Bernoulli Hypothesis Class:

$$P_{\theta}(x^n) = \theta^{n_0} (1-\theta)^{n_1}$$

Conditional capacity achieving prior can be found numerically:

deviate considerably from Jefferys prior, $w(\theta) \sim \frac{1}{\sqrt{\theta \cdot (1-\theta)^2}}$

Thus, after observing (n_0, n_1) : different from "add- β ". Equivalent β is

If the edges (0,1) are neglected, get "add- β " with $\beta = 1 + \sqrt{1/6}$

Large Class of Models

Universality w.r.t a large class of models

- A large class Θ of models may correspond to "unbounded complexity"
- Suppose it can be arranged as a union of simpler classes: $\bigcup_i \Theta_i$ each with a universal probability Q_i and complexity C_i , F_i or Γ_i
- A typical situation is hierarchy of models $\Theta_1 \subseteq \Theta_2 \subseteq \cdots$
 - Markov sources of growing order
 - Finite-state models with a growing number of states. In this case the class Θ_s of model with s states is itself a union: of model classes $\Theta_s = \bigcup_i \Theta_{s,i}$

Finite State and Markov Models

• Finite state with |*S*| states:

The model class is defined by s_0 and the transition function f:

 $s_{t+1} = f(s_t, x_t)$

The model class has |S||X| parameters defining P(x|s).

• Markov model of order $k: s_t = x_{t-1}, ..., x_{t-k}$. Has $|\mathcal{X}|^k$ parameters

FS Complexity of an Individual Sequence

- Lempel-Ziv 78 defined a Finite-State complexity measure of an individual sequence.
- The measure is the codelength (or log-loss) attained by any Finite-State machine of any size for that (infinite) sequence.
 - first, find the best FS model with S states for x^n (including its parameters)
 - then, consider the normalized loss and let $n \to \infty$
 - finally, let $S \to \infty$

$$\mathcal{U}(x) = \lim_{S \to \infty} \limsup_{n \to \infty} \frac{1}{n} \min_{f \in \mathcal{F}_S} \mathcal{L}_f(x^n)$$

set of *S*-state machines
FS predictability of the (infinite) sequence *x* Complexity is scaled with the amount of data

- This quantity is efficiently achievable by the Lempel-Ziv data compression scheme
- While not as general as Kolmogorov's complexity, it is computable!

Entropy: Complexity measure in the stochastic case

Claude Elwood Shannon

Andrei Nikolaevich Kolmogorov Ray Solomonoff

Gregory Chailin

Algorithmic complexity of individual sequence

Abraham Lempel

Finite-State complexity of individual sequence

Attained by Lempel-Ziv 78 scheme

Lempel-Ziv (LZ) universality

• LZ attains the entropy, if the source is ergodic (stochastic setting), or attains the FS complexity (individual setting):

.... by essentially increasing the "model size" as more data is available*

- How fast?
 - <u>Slow</u> $O(1/\log n)$ convergence
 - The reason: the "dictionary" keeps increasing even if the data exhibits a simple model
 - Practical methods of adaptive dictionary construction improves the rate!
- Need a method that "learn" the complexity!

* Some may use this approach to explain learning – "scaling laws"

Twice/Multiple/Hierarchical Universality

- Model classes with different complexity (different C_i , F_i or Γ_i)
- The source/explanation comes from a model in one of the classes

- Model classes with different complexity (different C_i , F_i or Γ_i)
- The source/explanation comes from a model in one of the classes
 - Again, may consider $\Theta = \bigcup \Theta_i$; however, this will lead to a large "redundancy"
 - Depending on the data size, take into account Θ_i 's that have negligible redundancy. Consider more classes as more data is available – like in LZ

- Model classes with different complexity (different C_i , F_i or Γ_i)
- The source/explanation comes from a model in one of the classes
 - Again, may consider $\Theta = \bigcup \Theta_i$; however, this will lead to a large "redundancy"
 - Depending on the data size, take into account Θ_i 's that have negligible redundancy. Consider more classes as more data is available – like in LZ

Proposed Preferred option: Twice Universality (originally, Ryabko, 1985) Generalized to Multiple Universality

Universal with respect to the choice of the model class!

• Suppose Q_i is the universal probability of the class Θ_i

Universal with respect to the choice of the model class!

• Suppose Q_i is the universal probability of the class Θ_i

Find a "twice universal" Q that can represent all the Q_i 's

Seems like a good approach For example, find $C_{TU} = \min_{Q} \max_{i} D(Q_i ||Q)$

However, might get $C_{TU} \gg C_i$ **Bad**...

Possible Solution for the last: Multiplicative regret. Consider:

 $\frac{\log Q}{\log Q_i}$

• In the individual case: Let $i(x^n) = \arg \max_i Q_i(x^n)$

Solve:

$$\min_{Q} \max_{x^n} \frac{\log Q(x^n)}{\log Q_{i(x^n)}(x^n)}$$

Possible Solution for the last: Multiplicative regret. Consider:

 $\frac{\log Q}{\log Q_i}$

• In the individual case: Let $i(x^n) = \arg \max_i Q_i(x^n)$

Solve:

$$\min_{Q} \max_{x^n} \frac{\log Q(x^n)}{\log Q_{i(x^n)}(x^n)}$$

• Solution: $Q_{TW}(x^n) = Q_{i(x^n)}^{\alpha}(x^n) = Q_{i(x^n)}^{\beta}(x^n)Q_{i(x^n)}(x^n)$ where $\alpha \ge 1$ is chosen so that $\sum_{x^n} Q_{TW}(x^n) = 1$

Note that $-\log Q_{TW}(x^n) = -\log Q_i(x^n) + [-\beta \log Q_i(x^n)]$

The extra loss is proportional to the "universal codelength" of Θ_i

Yet, a better solution: Multiple/Hierarchical Universality

- Large C_{TW} since there are "too many classes"
 - Add another universality layer: Three-times universality, multiple universality
- Eventually, in the last universality layer, can make the extra cost "proportional" to the accumulated complexity

Multiple Universality: Canonical Example

The universal representation of the integers (or the "complexity"):

We wish to represent an integer universally, with number of bits proportional to its binary representation. Range can be all the integers!

Multiple Universality: Canonical Example

The universal representation of the integers (or the "complexity"):

We wish to represent an integer universally, with number of bits proportional to its binary representation. Range can be all the integers!

- Consider the classes [2,3], [4,5,6,7],.... Class Θ_i contains 2^i models.
- Simplest case each model is deterministic on some value. In this case, the universal probability of each class :

 $Q_i = 2^{-i} \Rightarrow -\log Q_i = i = \lfloor \log n \rfloor, n$ the corresponding integer

Multiple Universality: Canonical Example

The universal representation of the integers (or the "complexity"):

We wish to represent an integer universally, with number of bits proportional to its binary representation. Range can be all the integers!

- Consider the classes [2,3], [4,5,6,7],.... Class Θ_i contains 2ⁱ models.
- Simplest case each model is deterministic on some value. In this case, the universal probability of each class :

 $Q_i = 2^{-i} \Rightarrow -\log Q_i = i = \lfloor \log n \rfloor, n$ the corresponding integer

• It turns out that a multiplicative universal probability should use $\alpha = 2$

Thus, $Q_{TW} = 2^{-2i} \Rightarrow$ universal code for the integer requires $2\lfloor \log n \rfloor$ bits

• With an extra bit to specify the integer 1, get Elias universal representation of the integers

Can repeat the process for "multiple universality" (or "hierarchical universality"). Attain a representation of the integer k with $log^* k$ bits

Elias' Codes

Markov Models

• The basis of the Minimum Description Length (MDL) principle

A universal code of a binary sequence x^n for the class of k^{th} - order Markov model requires: $L_k(x^n) = \widehat{H_k}(x^n) + \frac{2^k}{2n} \log n$ bits/symbol where $\widehat{H_k}(x^n)$ is the k^{th} - order Markovian empirical entropy – ML solution in the class

MDL principle: choose the model that minimizes $L_k(x^n)$

• A "twice universal" two-part code (actually 3-part code..)

 $L_{TU}(x^n) = \min_k [L_k(x^n) + \log^* k]$

• The extra "cost" for not knowing the class is negligible w.r.t the cost of not knowing the model in the class

Non-uniform convergence to the minimal empirical entropy

Twice/Multiple Universality

• More generally - a Bayesian solution with a prior that is inversely proportional to the class complexity

Practical success of Twice Universal Coding:

- Context-tree weighting (CTW, Willems et. al, 1996)
- Prediction by partial matching (many authors)
- Plug-in: <u>A universal finite memory source</u> (Weinberger, Rissanen, F 1995)

Underlying model classes: variable order Markov models

Variable Order Markov Models (unifilar sources)

• Unifilar models:

More on CTW

Weight all possible sub-trees of context to generate the multiple universal probability

Effective weight of a tree with *S* leaves: $2^{-(2S-1)}$ Resulting extra redundancy 2S - 1

Comparable (and smaller) than the redundancy of Q_{tree} of $s/2 \log n_S$

Recently extended, analyzed and made more efficient computationally – Kontoyiannis 2020

More on CTW

Weight all possible sub-trees of context to generate the multiple universal probability

Effective weight of a tree with *S* leaves: $2^{-(2S-1)}$ Resulting extra redundancy 2S - 1

Comparable (and smaller) than the redundancy of Q_{tree} of $s/2 \log n_S$

Recently extended, analyzed and made more efficient computationally – Kontoyiannis 2020

Multiple Universality Interpretation

Consider a 3-part coding scheme:

- Code the number of leaves |s| using Elias recursive codes.
- Given |s|, code the exact tree there are C(s) ~ 4^s/(2π) trees with s leaves.
 Code the probabilities at each leaf using KT-estimator.
 The redundancy is slightly potter than the bound for CTW, R_{CTW}:

$$R_{3pc}(y^n) = 2|s| - 1.5\log(|s|) + \log^*(s) + \frac{|s|}{2}\log(\frac{n}{|s|}) + O(1)$$

This analysis also gives insight to the 2|s| term in R_{CTW} .

Large Alphabet

- Large alphabet $d \gg n$. d may even be unknown or infinite..
- Hierarchy according to the alphabet size: $\log^* k + \log {d \choose k} + \frac{k}{2} \log n + \left(-\log p_{\theta_1,\theta_2,\ldots,\theta_k}(y^n) \right)$ works for $k \ll n$

In the predictive distribution d disappear; get Ristad's law of succession!

One consequence – predictive probability of "unseen" symbol: $\frac{k(k+1)}{n^2+n+2k}$

Large Alphabet (2)

- Large alphabet $d \gg n$. d may even be unknown or infinite..
- Hierarchy according to the empirical counts:

$$\log Part(n) + \log \binom{d}{d_{1 \dots d_n}} + \left(-\log p_{emp}(y^n)\right)$$

In the predictive distribution *d* disappear; get close to Good-Turing law of succession!

A consequence – predictive probability of "unseen" symbol:

$$\sim \frac{d_1}{n(d-k)}$$

This hierarchy weights more low entropy empirical distribution, while the previous hierarchy weights more small alphabet size

Perceptrons (Linear Separators)

Linear Separators

 Binary classification can be viewed as the task of separating classes in feature space:

Lower dimensional separators can replace higher dimensional with large margin

Multiple universality over the dimension

Perceptrons and other Linear Models: An alternative Hierarchy

Consider the general "model class":

$$\{p_{\theta}(y|\underline{x}) = f(y; \underline{\theta}^T \underline{x})\}$$

where $f(\cdot)$ is a general stochastic function and $\underline{\theta}, \underline{x}$ are d-dimensional vectors, $d \gg n$ can be very large

This case include perceptrons, linear regression, logistic regression and many more model. **OVERPARAMETERIZED!**

Perceptrons and other Linear Models: An alternative Hierarchy

The embedded model classes: All subsets of $\{\theta_1, \theta_2, \dots, \theta_d\}$

Arrange the classes according to their cardinality:

d classes with a single parameter, $\binom{d}{2}$ with 2 parameters, and so on..

A multiple-part description for this hierarchy:

Specify *K* the number of parameters, then which class of *K* parameters, then the *K* parameters and finally the data given this description. This requires:

$$\log K^* + \log \binom{d}{K} + \frac{K}{2} \log n + \left(-\log p_{\theta_{i_1}, \theta_{i_2}, \dots, \theta_{i_K}}(y^n | \underline{x}^n) \right)$$

A slightly shorter "codelength" will be obtained by the appropriate mixtures

Linear Regression Example: Polynomial fit

Linear regression solution is

$$\hat{\theta} = \left(X_N^\top X_N\right)^{-1} X_N^\top Y_N = \sum_{i=1}^M \frac{u_i^\top}{h_i^2} X_N^\top Y_N \tag{1}$$

The pNML solution is

$$p(y|x, heta) = rac{1}{\sqrt{2\sigma^2 K^2}} exp \left\{ -rac{(y-x^ op \hat{ heta})^2}{2\sigma^2 K^2}
ight\}$$

We define the summation using n dimensions $i_1, i_2, ..., i_n$ as

$$heta_{i_1,i_2,...,i_n} = \sum_{i\in(i_1,i_2,...i_n)} rac{u_i^ op}{h_i^2} X_N^ op Y_N$$

To combine the predictions of the multiple model class

$$egin{aligned} p(y|x) &= \sum_{i_1=1}^M p(y|x, heta_{i_1}) \ &+ \sum_{i_1=1}^M \sum_{i_2=i_1}^M p(y|x, heta_{i_1,i_2}) \ &+ \sum_{i_1=1}^M \sum_{i_2=i_1}^M \sum_{i_3=i_2}^M p(y|x, heta_{i_1,i_2,i_3}) \end{aligned}$$

+ ...

$$+\sum_{i_1=1}^{M}\sum_{i_2=i_1}^{M}...\sum_{i_M=i_{M-1}}^{M}p(y|x, heta_{i_1,i_2,...,i_M})$$

Multiple Universality Linear Regression

With Random Feature vectors:

Fig. 3. Mean loss for d = 10 as a function of n = 1, ..., 20 over 50 iterations, using $\sigma^2 = 0.01$ (solid) and $\sigma^2 = 0.1$ (dashed).

Need computationally efficient (recursive?) algorithm!

Are Deep Neural Networks Hierarchically Universal?

Sparsity of layer inputs, after the ReLU non-linearity

Need to find the right hierarchy structure..

Manifolds of various dimensions

.. and so on
A large Network as a Union of Small Networks

A Large Network

An embedded smaller Network

- Specify the number of nodes in each layer;
- Then, specify a small networks with these number of nodes;
- Then specify the parameters associated with this smaller network;
- Finally encode the data given this description. This requires:

$$\sum \log d_i + \Sigma \log \binom{d_i}{d_i^*} + \Sigma \frac{d_i^* d_{i-1}^*}{2} \log n + \left(-\log p_{small \, network} \quad (y^n \mid \underline{x}^n)\right)$$

With fully connected network do not care about the node choice. Do not need 2nd term

Experiment with Hierarchy of Small Networks

- Given a large networks. Large hypothesis class
- Randomly select sub-networks of various "capacities". Total number of parameters are equivalent to the large network size
- Approximate the universal predictor of each sub-network by the ERM with SGD
- Perform "multiple universality" over these "universal predictors":
 - Average the predictors ensemble averaging, however:
 Weights reflect both –
 - The complexity of the sub-network: larger networks are penalized
 - An exponential weighting according to the fitness to the training

Results

Num of params = [4015, 4095, 4175, 4255, 4335, 4415, 4495, 4575, 4655, 4735, 4815, 4895, 4975, 5055, 5135, 5215, 5295, 5375, 5455, 7965, 8070, 8175, 8280, 8385, 8490, 8595, 8700, 8805, 8910, 9015, 9120, 9225, 9330, 9435, 9540, 9645, 9750, 9855] Train Loss = [0.3954, 0.2753, 0.24759, 0.51102, 0.8354, 0.25432, 0.23593, 0.36226, 0.24435, 0.23079, 0.235, 0.2334, 0.23162, 0.23547, 0.23665, 0.22929, 0.22265, 0.24359, 0.23716, 0.19122, 0.12353, 0.16399, 0.12197, 0.11127, 0.08941, 0.09461, 0.15591, 0.15254, 0.09045, 0.09315, 0.08318, 0.09299, 0.08623, 0.10994, 0.0675, 0.06373, 0.06295, 0.06052]

-----SMALLEST MODELS ------

Test Loss = [0.43543, 0.31145, 0.2936, 0.56065, 0.90121, 0.31526, 0.29546, 0.40616, 0.29731, 0.29901, 0.30029, 0.29228, 0.29415, 0.3073, 0.31207, 0.2949, 0.3018, 0.33312, 0.31027, 0.25704, 0.20413, 0.23476, 0.2006, 0.20284, 0.17873, 0.18968, 0.23554, 0.23159, 0.20639, 0.20361, 0.20059, 0.19853, 0.18341, 0.20173, 0.19246, 0.21829, 0.20162, 0.20023]

Eval Loss = [0.3819, 0.2537, 0.2416, 0.4781, 0.804, 0.2628, 0.2276, 0.351, 0.2427, 0.2365, 0.2361, 0.2325, 0.2461, 0.2311, 0.2418, 0.2333, 0.2282, 0.2601, 0.248, 0.1948, 0.1741, 0.1959, 0.1756, 0.1661, 0.1574, 0.1695, 0.1877, 0.1854, 0.1622, 0.1577, 0.1662, 0.187, 0.1626, 0.172, 0.1525, 0.1459, 0.1481, 0.1565]

Testing AVERAGED Ensemble of 38 models: Test: Loss: 0.1425, Accuracy: 7167/7500 (95.56%)

Testing WEIGHTED AVERAGED Ensemble of 38 models: **Test: Loss: 0.1409**, Accuracy: 7189/7500 (95.85%)

Yet, there is still an Elephant in the room:

What is the "Hierarchy"? Is there a "right" hierarchy?

This might be undecidable

It definitely may require enormous computation

THANKS!