1

The 9/(9-1) channel

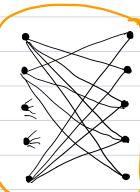
Input alphabet: $\{x_1, x_2, ..., x_q\} = X$

Output alphabet: {2, x2, ..., xq}

Characteristics:

 $Pr[(\alpha_i, \alpha_j) > 0] \text{ iff } i \neq j.$

When It is transmitted, any symbol other than It can be received.



The 5/4 channel

Code: C = X, block length = n.

C is an l-list decoding code for the 2/(2-1) channel if for every output world $6' \in X^N$:

 $|\{\sigma \in C: \sigma \text{ is compatible with } \sigma'\}| \leq \ell$.

 $Cap(q, \ell) = \limsup_{n \to \infty} \max_{c} \frac{1}{n} \log_{2} \binom{m}{\ell}$ (Elias 1988)

$$Cap(q, q-2) = 0$$

Today

Fredman-Komlós bound

$$\frac{1}{19} \stackrel{=}{e}^{9} \lesssim Cap(9, 9-1) \lesssim 199 \stackrel{=}{e}^{9}$$

probabilistic density argument

argument

entropy argument

 $0.0473 \times \frac{1}{3} \log \frac{32}{29} \leq Cap(4,3) \leq 6/9 \times 0.3158$

- 10. Dalai + Garus wami

Long lists

 $\frac{1}{2} \leq cap(q, q \ln q) \leq \frac{1}{q}$

Question: How big must I be so that

$$\frac{1}{2^c} \leq Cap(q, 1)$$
?

Answer: 1> = 1 glarg

Because, Cap(2, Egling) & exp(-cq)

6. Bhandan

Graph Grening

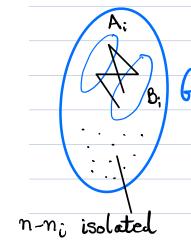
1

t > log_n

Two proofs (?)

From each & detete	Pick a vertex & of Kn
From each & detete one side at random	Pick a vertex v of Kn uniformly at random.
	p Q
Pr[r Surrives] = /2t	Let X, X2 X1 be the
these events are disjoint	Let X, X2,, X _t be the colours of v in G,, G _t .
	1 T5.1 × × 7
	$\log n = I[v x_1x_t]$ $\leq H[x_1x_t]$
n. [< 1	= < H[x,x]
n.1 ≤1	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
t > logn.	≤t

Hansel's refinement



 $n_i = number of non-isolated vortices$ in G_i .

 $\frac{t}{\geq n_i \geqslant n \log n}$

Let be the total number of non-isolated occurrenced of vertex x.

Delete vertices en Ai or Bû from Go (lach with pot !)

Pr[x Surnives] = 2 lx.

 $\frac{1}{2} \frac{1}{2} \ln \leq 1$ $\frac{1}{2} \ln = \frac{1}{2} \ln 2$ $\frac{1}{2} \ln = \frac{1}{2} \ln 2$

Pick ve[n] at random.

Let Xi = { o of ve Ai | Let Xi = { ve Bi

 $\log n = \prod_{t} [v: X_{t}...X_{t}]$ < ≥ T[v: Xi] =] H[x2] - H[X2/V] $= \sum_{i} n_{i} / n_{i}$

The probabilistic goof

What can we do if the G_i are not bipartite? In each step, we retain an independent set Y_i of the graph G_i . Let $P_{ix} = P_r[x \in Y_i]$. Then,

$$\sum_{x} \prod_{i=1}^{t} P_{ix} \leq 1$$

$$\left(\prod_{x} \prod_{i=1}^{t} P_{ix}\right)^{n} \leq n$$

$$\sum_{i} \sum_{\alpha} \log P_{i\alpha} > \log n$$

$$\mathcal{H}(G) = \max_{\mathbf{Y}} \sum_{\mathbf{x}} \log \mathcal{P}_{\mathbf{x}}[\mathbf{x} \in \mathbf{Y}]$$

$$\frac{t}{\sum_{i=1}^{n} \mathcal{H}(G_i)} \geqslant \log n$$

The entropy groof

Pick a vertex \times uniformly at random and pich an independent set Y_i in G_i s.t. $x \in Y_i$.

$$\hat{\mathcal{H}}(G) = \max_{(x,y)} \mathbb{I}[x:y]$$

X uniform, Y an ind-set s.t. XEY.

$$\frac{t}{\sum_{i=1}^{t} \mathcal{H}(b_i)} > \log_2 n$$

Körner's graph entropy

H(6) = H(6) = H(6)

Subaddiknity

6 = 6,062

1

H(G,)+H(G) > H(G).

Also,

 $\mathcal{H}(6, P) = \lim_{n \to \infty} \frac{1}{n} \log \chi(6^n)$

∀ ε ∈ (0,1).

The minimum chromatic number of a subgraph of G^n that includes at least E of ets maso.

The Fredman-Kombis bound

C ⊆ [q], ICl = m.

For every set of 9 code words, there is a Coordinate where they all differ.

 $n \ge \frac{e^q}{9\sqrt{q}} \log m$

 $Cap(q,q-1) \leq q^{15} e^{q}$

Pick $x_1, x_2, \dots, x_q \in C$ at random without replacement.

Every pair of codewords in $C \setminus \{x_1, x_2, ..., x_{q-2}\}$ differs in Some good coordinate.

$$n > \frac{e^k}{9^{2s}}$$

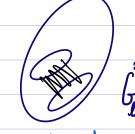
Coordinates i $9^{2s} = \frac{9}{n}$ Where some 1
two 2j have the Good
Same value Coordinates

We	Can	inprove nsel's lemme lation for t	thûs	by	a fac	ters 9
by wai	ng Ha	asel's lemme	r. We a	sill de	this mo	re
careful	colcu	lation for t	he 4/2	chans	el.	
			, J		<u> </u>	
The	4/3	channel				
					<u>_</u> γ	

The 4/3 channel	<u> </u>
	x
 Pick or and or' at random 	
 The codewords in C\{\alpha_3\alpha'\} 	x <u>′</u>
must be separated from	
must be separated from each other and from $2c, 2'$	at 1
one of the coordinates.	Goordinate L
b	

$$\bigcup_{l=1}^{n} G_{l}^{(\alpha,\alpha')} = K_{m-2}$$

On average f_{ℓ} has $g m \cdot \left(\frac{3}{8}\right)$ non-isolated vertices.



$$n \cdot m \cdot \frac{3}{8} \geqslant (m-2) \log_2(m-2)$$

non-isolated restices

$$n \geq (8) \log m$$

from both a and 2' at position l.

 $Cap(4,3) < \frac{3}{8} = 0.375$

Ankan: If C has large rate, then there must be two code words that are clase. In the codinates where they agree, Ge will be empty.

Capl 4,3) < 0.3512

W. Dalai + Guruswami

Idea: Examine the Phtkin bound more closely.

Suppose 101=4 hon

If a and a are chosen from a common subtree, then

$$\frac{3}{8}\left(1-R+\varepsilon\right) \gtrsim \log (m-2)$$

5 2 Rs

 $R_o \leq \frac{3}{19}$

 $(ap(4,3) \le \frac{6}{19} = 0.3158$

Long lists

Cap(2, Eglag) < exp(-eq)

$$C \subseteq [9]^n$$
 $|C| = m$

Goal: Show that $JS \subseteq C$ ISI = Eqlip qs.t. in each coordinate S misses some symbol in [q]. If we regard coordinates as hash functions $h: C \rightarrow [q]$, then $h(s) \neq [q]$ for all $i \in [n]$.

- o Pick a set of 9-2 code words 5

 In a typical column, these
 Gode words pick up n 9-2

 Symbols. → S,
 - Pick a set of $\frac{9}{e}$ $\frac{9}{e}$ 2 symbols. In a typical column, we expect $solution (9/e)^{e\times p} (\frac{1}{e})$ symbols unpicked. $\longrightarrow S_2$

· And so on, ..., pick sets S3, S4, ...

Difficulty

A typical columns.

· Argue that they will be few.

5 log m/exp(c'q)

· Eliminate the atypical columns by restricting attention to a subcode.

$$C \sim C'$$

$$|\ell| = m$$
 $|C'| = m' = m$

· This works up to a point!

$$Cap(q, 1.58q) = exp(-\Omega(q))$$

(W. Chakraborty, Raghunathan, Sasatte O6)

- · Eliminate columns that are atypical for any set in the ensemble.
 - · A lot more columns to eliminate
- · Technical but elementary.

Please see:

Siddharth Bhandari + Jaikumer Radhakrishnan. Bounds on the zero-error list-decoding Capacity of the 9/(9-1) channel. ISIT 18

Email jaikumar @ tifr. res. in fer the lotest ver sion.

Thank you!

These notes were prepared for the talk on "The zero-error list-decoding capacity of the q/(q-1) channel." Communication, Control and Signal Processing Series (CCSP) at UMD on 11 Feb 2021.

