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Abstract

We present simple coding strategies, which are variantshefSchalkwijk-Kailath scheme, for
communicating reliably over additive white noise chanrelthe presence of corrupted feedback. More
specifically, we consider a framework comprising an additivhite forward channel and a backward
link which is used for feedback. We consider two types of gption mechanisms in the backward link.
The first is quantization noise, i.e., the encoder recelvesquiantized values of the past outputs of the
forward channel. The quantization is uniform, memoryless time invariant (that is, symbol-by-symbol
scalar quantization), with bounded quantization erroe $acond corruption mechanism is an arbitrarily
distributed additive bounded noise in the backward linkréHe&e allow symbol-by-symbol encoding
at the input to the backward channel. We propose simple @k@chemes that guarantee positive
information rate, in bits per channel use, with positiveoeexponent. If the forward channel is additive
white Gaussian then our schemes achieve capacity, in thedidiminishing amplitude of the noise
components at the backward link, while guaranteeing thafptiobability of error converges to zero as
a doubly exponential function of the block length. Furthers) if the forward channel is additive white
Gaussian and the backward link consists of an additive bedinbise channel, with signal-to-noise
ratio (SNR) constrained symbol-by-symbol encoding, thansthemes are also capacity-achieving in
the limit of high SNR.

(nmarti ns@ind. edu) Nuno C. Martins is with the Electrical and Computer Engiiveg Department and the Institute
for Systems Research at the University of Maryland, Collegek. £ sachy @t anf or d. edu) Tsachy Weissman is with
the Department of Electrical Engineering and the Infororatbystems Laboratory at Stanford University. Note: An dded

version of this work was presented at Stanford Universitylaly 7th of 2006, in the Colloguium on Feedback Communicetio



. INTRODUCTION

That noiseless feedback does not increase the capacity oforgkess channels, but can
dramatically enhance the reliability and simplicity of thehemes that achieve it, is well known
since Shannon’s work [10]. The assumption of noiselessbf@eldis an idealization often meant
to capture communication scenarios where the noise in tbleAzad link is significantly smaller
than in the forward channel. However, all the known simpleesaees for reliable communication
in the presence of feedback rely heavily on the assumptiairtiie feedback is completely noise-
free, and break down when noise is introduced into the bakluak.

As a case in point, it was recently shown in [5] themty feedback scheme with linear
encoding (of which the Schalkwijk-Kailath scheme and itsavats are special cases) breaks down
completely in the presence of additive white noise of aabity small variance in the backward
link: not only is it impossible to achieve capacity, but, lvéuch schemes it is impossible to
communicate reliably at any positive information rate.

It is therefore of primary importance, from both the themadtand the practical viewpoints, to
develop channel coding schemes that, by making usesl feedback, maintain the simplicity
of noiseless feedback schemes while achieving a positieeafareliable communication. It is
the quest for such schemes that motivates this paper.

Our main contribution is the derivation of simple codingasgtgies, which are variants of the
Schalkwijk-Kailath scheme, for communicating over adeitivhite channels in the presence of
corrupted feedback. More specifically, we consider two $ypecorruption mechanisms in the
backward link:

« Quantization noise: the encoder receives the quantizatesabf the past outputs of the
forward channel. The quantization is uniform, memorylead @me invariant (that is,
symbol-by-symbol scalar quantization), with bounded duation error.

. Additive bounded noise: the noise in the backward link isitage] and has bounded com-
ponents, but is otherwise arbitrarily distributed. Hereallew symbol-by-symbol encoding

at the input to the backward channel.
The coding schemes that we present achieve positive infaomaate with positive error ex-
ponent. In addition, if the forward channel is additive wehiBaussian then our schemes are

capacity-achieving, in the limit of diminishing amplitudéthe noise components in the backward



link. Furthermore, if the backward link consists of an aneitbounded noise channel, with
instantaneous encoding, then our schemes are also capabigving in the limit of high SNR
(in the backward link). We note that the diminishing of thg da capacity with vanishing noise
in the backward link is a desired property, not to be takengi@nted in light of the negative
results in [5]. In addition, the probability of error of ouoding schemes converges to zero as a
doubly exponential function of the block length, providéattthe forward channel is additive,
white and Gaussian. As will be seen in subsequent sectiomsralysis of the performance of
the suggested schemes is based on elementary linear sytbieong

To our knowledge, the impact of noise in the feedback link ondbmental performance
limits and on explicit schemes that attain them has hithexteived little attention. Exceptions
are the papers [8], [2] which study the trade-off betweeiabdity and delay in coding for
discrete memoryless channels with noisy feedback, andestiggpncrete coding schemes for
this scenario. Another exception is the recent [6], whichsiders the capacity of discrete finite-
state channels in the presence of non-invertible maps ifietidback link, such as quantization.
Yet another paper is the aforementioned [5], which is prilpaoncerned with the impact of
noise in the backward link on the error exponents.

The remainder of this paper is structured as follows. Sedii@resents preliminary results
and definitions, while Section Il specifies and analyzes dirgp scheme in the presence of
feedback corrupted by bounded additive noise, under thexggson that the noise is observable
at the decoder. The main results of the paper are present8ddtions IV and V, where we
describe and analyze coding schemes for the cases wheradkedrd link features uniform
guantization or bounded additive noise, respectively. @dyger ends with conclusions in Section
VI.

Notation:

« Random variables are represented in large caps, su¢h as

« Stochastic processes are indexed by the discrete timeblatidike in X,. We also useX*

to represent Xy, ..., X;), provided that > 0. If ¢ is a negative integer then we adopt the
convention thatX* is the empty set.

« A realization of a random variablg is represented in small caps, suchzas
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Fig. 1. Basic feedback scheme.

[I. PRELIMINARY RESULTS AND DEFINITIONS

In this Section, we define and analyze a feedback system vdinseure is described by the
diagram of Fig 1. The aforementioned system will be preserthé coding schemes proposed
in subsequent Sections.

For the remainder of this paper, we consider tHatis a zero mean and white stochastic
process of variance?, and thatZ is a real random variable taking values|in1]. In addition,

Z andW* are assumed independent for @alThe feedback noisg, is a bounded real stochastic

process whose amplitude has a least upper-bound given by:
oy inf{a € R>¢ : Prob(|V;] > a) =0,t > 0}
meaning that the following holds:
Prob(|Vi| <ay)=1,t>0

The remaining signal&’,, Y; and Z, are also real stochastic processes. The block represented i
Fig 1 by ¢ is an operator that mapg and U*~! into X, for all ¢. Similarly, ¢, mapsY* and
V' into Z,. The description of the maps- and gE,: is given in the following definition.
Definition 2.1: Given a positive real constamt the operatorsp; : (¢, Z,U'"') — X, and
o= (t, Y, V') — Z, represented in Fig 1, are defined as follows:
(277 —27) (i, 27U + 2 Z) if ¢ > 1

= @)
(277 — 2"\ Z if t =0

X, =or (12,071 <

t—1 o7 (i ;

. o | =227 DV 4+ Yy if > 1

Zi= ¢ (Y, V) ¥ 2o Vi) (2)
0 ift=0



Notice that (1) has a term, given 'Z, that grows exponentially. However, it should be
observed that if the feedback loop is closed (see Fig 1) bygusi = X, + V; + W, then X is
given by:

X, =(27-2) (Zz =D (W 4+ V) 4 27 ”Z) >1 (3)

which describes a system that is stable, in the bounded iimpplies bounded output sense.
In the absence of backward link noise, ilé.= 0, (1) and (2) are equivalent to the equations
used in the original work by Schalkwijk-Kailath [9]. An atteative minimum variance control
interpretation to (1) and (2), in the presencepeifectfeedback, is given in [3]. In addition,
the work by [3] extends Schalkwijk-Kailath’s algorithm, tWiperfectfeedback, to the multi-user
case. A general control theoretic framework to feedbaclaci#&pis given in [11]. The following
lemma states a few properties of (1) and (2) which motiva&gr thse in the construction of
coding schemes.

Lemma 2.1:Let 0%, 5y andr be given positive real constants. Consider the feedbadkrsys
of Fig 1, which is described by (1)-(2) in conjunction withetfollowing equations:

Y, = X, + W, 4)
U =X+ Vi + W, 5)

The following holds:
X, =22 =2 Z, - Z), t >0 (6)
E[X}] < (awm +oy(27+ 1)+ 272" - 2—7’)>2 , >0 (7)

If W, is zero-mean, white and Gaussian, with variange then the following holds:

N2

_(a—)
Prob(|Xy| > a)<e 2, a>0,t>0 8)

where~ and 5 are the following positive real constants:

v O )y 27— 2T (9)

ﬁQ def (22F _ 1) 012/‘/ (10)
Proof: In order to derive (6), we substituté = V; + Y; in (2). We now proceed to proving

the validity of (7). Since the operators. and ¢, are linear, we can bound the variance f



by separately quantifying the contribution of the exterin@luts 7, 1, andV;. By making use

of the triangular inequality, we arrive at the following bl

(B0 < (ohge [

T 1/2
T ()| dw) +oy max T ()] +27™(2"—27") (11)
- we(—m,m
whereT (¢7) is the following transfer function:
) 2—7’ _ 2F
T (7)) = = i 12
(6 ) 6Jw _ 2—F ( )
The transfer functiol” (e/*) describes the input-output behavior of the feedback loom{¥;
to X; and fromWV; to X,. The first term in the right hand side of (11) quantifies thetdbution
from the white proces$l;, while the second term is an upper-bound to the contribubioiy;
and the last term comes from tivgtial condition determined byZ. Standard computations lead
to the following results:
1 s
2 J_,

‘T (ej‘”) ‘2 dw=2% -1 (13)

oy 2T =27
wer?_aﬁfﬂ] ‘T (ej )‘ o 1—92-F

After substituting (13) and (14) in (11), we arrive at (7).drder to prove (8)-(10), under the
assumption thatV; is zero mean white Gaussian, we define the following auyili@aussian

=2 +1 (14)

process:

- 0 ift=20
(277 = 2") S g 2T, if > 1
After simple manipulations, similar to the ones leading 18){(14), we get the following
properties ofX;:
EX7]= (2" —1) (1—-27"") o}, < B (16)

1 _ Q—Ft ~
; 2) <4 17)

v —
1—-2-r
where we used the definitions (9) and (10) along with (3). @qoently, we arrive at:

~ 2 [o¢] _ M2
Prob (| X;| > «) < Prob <\Xt\ Za—v) < ,/—2/ e 22dp, a>0 (18)
7.‘-6 a—y
where we used the facts that, by definitid&, — X,| < v, that E[X?] < $? and thatX, is

normally distributed. The derivation of (8) is complete enge use the following upper-bound
[7, page 220 eq. (5.1.8)]:

X, — X < (27 —277) <a

2 oo W2 _(a—y?
/ e 22dy <e 26 (19

ﬂ-ﬁz a—y



[1I. A CODING SCHEME WITH FEEDBACK

In this Section, we describe a coding scheme in the presehteedback according to the
framework of Fig 2, where; and¢; are defined by (1)-(2), while the maps, andém will be
defined below. Notice that the scheme of Fig 2 assumes%ﬂqlaas direct access to the feedback
noiseV;. Under such an assumption, in this Section we constructfarneet and simple coding
and decoding scheme which will be used as a basic buildingkhlo the rest of the paper. In
Section IV we use the fact that if the backward link is coragpby uniform quantization then, in
fact, V; is the quantization error which can be recovered from thewutf the forward channel
and used as an input t@; Finally, in Section V we show that bounded noise in the fee#b
link can be dealt with by using a modification of the quantifeeldback framework of Section
IV. It should be noted that in the schemes presented in $ectid and V, the decoder relies
solely on the output of the forward channel.

The main result of this Section is stated in Theorem 3.2, eher compute a rate of reliable
transmission, in bits per channel use, which is achievapkaé scheme of Fig 2, in the presence
of a power constraint at the input of the forward channel.hSaitransmission rate is a function
of the parameters,, 5 and it also depends on the forward channel's input powertcaing,
which we denote a$%. Theorem 3.2 also provides a lower bound on the error exgoofen
the resulting scheme. If the forward channel is additiveitevhnd Gaussian then Theorem 3.2
shows that the probability of error of the scheme of Fig 2 €ases as a doubly exponential
function of the block length.

We start with the following definitions of theeiling and floor functions denoted by and
O, respectively.

O(a) «f min{n e N:a<n}, aeR (20)

O(a) wf max{n € N:a>n}, aeR (21)

The following definition specifies the mags, and ém represented in Fig 2.
Definition 3.1: Given a positive integen, a positive real constant, a random variable\/

taking values in the sefl,...,2°0™} and a real stochastic proce§§, the following is the

!By reliable transmission we mean that the probability obegonverges to zero with increasing block length
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Fig. 2. Basic feedback scheme with encoding and decoding.
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definition of the map9,,, : M — Z and#,, : Z, — M;:

Z =0, (M) (M - %) 9-O(rn) (22)

M, =0,,(2)? 6 (2@0‘%) L te{0,...,n} (23)
For the remainder of this papet, denotes the block length of the coding schemes and
represents a design parameter that quantifies the desi@unation rate, in bits per channel
use. The following equations, describing the coding scheiiég 2, will be used in the statement

of Lemma 3.1 and Theorem 3.2.

My = b (6002, Y1) (24)

}/t = Wt _'_ ¢7_‘ (t7 9n,7’<M>7 Ut_l) (25)
X

Uy=Y+V; (26)

Lemma 3.1:Let 03, o andr be given positive real parameters. Consider that the block
length is given by a positive integer, that the desired transmission rate is a positive real
numberr strictly less thans and that)M is a random variable arbitrarily distributed in the set
{1,...,2°0™1 If we adopt the scheme of Fig 2, alternatively described 24){(26), then the

following holds:
2_2(F_T)NE[X72L]
4(277 _ 2—7“)2

If 1, is zero mean, white and Gaussian with variaagethen the following doubly exponential

Prob (M 4 Mn) < (27)

decay, with increasing block size of the probability of error holds:



~ 1 F_og—rFyp(F—r)n_~)2
Prob <M + Mn) <e m(2(2 277)2 ¥) 28)

where~ and  are positive real constants given by (9) and (10), respalgtiv
Proof: We start by using (22)-(23) and the fact tt2&™ 7 is in the set{1,...,260™ — 1}

to conclude the following:

N 1 ~

leading to:
Prob (M ” Mn> < Prob <‘Z —z|> 2-<@<m>+1>) (30)

Using (6), (30) and the fact th&(rn) < rn, we get:

Prob <M ”: Mn> < Prob (|X,| > 2(27 — 27)20-m) (31)

The inequality (27) follows from Markov’s inequality apet to (31). Finally, the inequality
(28) follows from (31) and (8)

A. Lower-bounds on the achievable rate of reliable transmois in the presence of a power

constraint at the input of the forward channel

Below, we define a function that quantifies an achievable sateliable transmission for the
scheme of Fig 2, in the presence of a power constraint at & iof the forward channel.

Definition 3.2: For every choice of positive real parametefs, Pz anday satisfying4s? <
P%, define a functiong : (0%, P%,5v) — Ry, as the non-negative real solutignof the
following equation:

O'Wv229— :PX—5V (1+29) (32)

If, instead,452 > P2 then (o2, P%,5y) 2 0.
It is readily verifiable that a non-negative real solutior(22), in terms ofp, exists and is unique,
provided thats3, and P# are strictly positive and thatz? is less or equal thaw.

Theorem 3.2:Let o7, P¥ anday be given positive real parameters satisfyifigf, < P3.
In addition, select a positive transmission ratand a positive real constantsatisfyingr <
r < o(od, P%,av). For every positive integer block length the coding scheme of Fig 2,

alternatively described by (24)-(26), leads to:



2
EBX?]< | Px+ 2772 =277 | ,0<t<n (33)
—_————
vanishes with increasin

2_2(F_T)nE[X5]
4(2F _ 2—77)2

Prob (M # Mn) < (34)

where M is a random variable arbitrarily distributed in the get..., 29}, If W, is zero
mean, white and Gaussian with variangg then the following doubly exponential decay, with
increasing block size:, of the probability of error holds:

1 (2(27_‘_277_‘)2(?'77‘)n_,y)2

Prob <M ”] Mn) <o Em L a>0 (35)

where~ and  are positive real constants given by (9) and (10), respagtiv

Theorem 3.2 shows that the scheme of Fig 2, under the camstheit the time average of
the second moment of; is less or equélthan P2, allows for reliable transmission at any rate
r strictly less tharp(a%,, P%, ). In addition, Theorem 3.2 shows that any rate of transmissio
r, if strictly less thano(c3,, P%,5v), leads to an achievable error exponent arbitrarily close to
2[r — o(cf,, P%,0v)]. In addition, Theorem 3.2 shows that if the forward chansehdditive,
white and Gaussian then the probability of error decreaststive block lengthn at a doubly
exponential rate (see (35)).

Proof of Theorem 3.2: The inequalities (34) and (35) follow directly from Lemma. 3The
derivation of (33) follows from (7) and from the fact thatfn Definition 3.2 < o(c%,, P%,5v)
implies thatoy /2% — 1+ 6y (27 + 1) < Px. O

It follows from its definition, as the solution to (32), thats?,, P%,5y) also satisfies the

following 3 properties:

1 P2
lim o(od,, P3,5v) = = log, (1 + —;f) , o >0, Py >0 (36)

oy —0t 2 UW

P2
0 <U§V,P§, TX) =0, 0% >0, P2 >0 (37)
2 2 = Px 2 2 =2
o(owy, Px,0v) ~logy | ———— |, Px >> max{oy, 0y}, (38)
ow + oy

2See inequality (33).
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where ~ indicates that the ratio between the left and right handssiofe(38) tends tol as
Px — oo. If W, is white Gaussian then (36) indicates that in the limit, as thcond moment
of feedback noise goes to zero, the scheme of Fig 2 approaapasity. We have computed
o(o?,, P%,ay) for o}, = 1, P¥ = 4 and one thousand equally spaced valuesef ranging
from zero to one and the results are plotted in Fig 3. The flledtrates a graceful (continuous)
degradation ob(1,4, ) as a function of,, going from the highest rate (%ﬂogz 5, achieving
capacity whenl¥, is Gaussian, down to zero wher = 1, which is consistent with (36) and

(37), respectively.

IV. SPECIFICATION OF A CODING SCHEME USING UNIFORMLY QUANTIZED EEDBACK

In this Section, we consider the scheme of Fig 4, whigse represents a memoryless uniform
quantizer with sensitivityr,, and A;,, gives the associated quantization error. The main result
of this Section is Corollary 4.1, where we indicate that theuits of Section Ill hold in the
presence of uniformly quantized feedback. Notice that iagrdm of Fig 4 follows from Fig 2
by adoptingV; as the quantization error, which the decoder re-constiuctmaking use of\;,,
applied to the output of the forward channel. The precisendefns of the uniform quantizer
5, and of the quantization error functiah;,, are given below:

Definition 4.1: Given a positive real parametéy a uniform quantizer with sensitivity is a

%It is a standard fact [1] that the capacity in bits per chanrsa of an additive Gaussian channel, with noise variarfpe

2
and input power constrainPz, is given by% log, (1 + fTX)
w
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function ®, : R — R defined as:

y+b

By(y) = 260 (W) (39)

where® is thefloor function specified in (21). Similarly, the quantizationaris given by the

following function:
Ap(y) = u(y) —y,y €R (40)

which satisfies the following bound:

[Ap(y)| < by R (41)
The coding scheme of Fig 4 can be equivalently expressedéjottowing equation’
My = b (602, V1)) (42)
Yi=W:+ ¢F (t, en,r(M)a Ut_l) (43)
X,
Up =25, (V) =Y, + Vi (44)
Vi=As, (V) (45)

The Corollary below follows directly from Theorem 3.2 agpalito the scheme of Fig 4, along
with the upper-bound (41).

“Some of these equations have been used before, but we repeatere for convenience.



Corollary 4.1: Let 0%, P% anday be positive real constants satisfying?. < Pz, wheregy
represents the sensitivity of the quantizer. In additi@led a positive transmission rateand
a positive real constant satisfyingr < r < o(o3,, P%,5%). For every positive integer block
lengthn, the coding scheme specified by (42)-(45) (see Fig 4) leads to

2
EX} < |Px+ 2772 —=277) | ,0<t<n (46)
—_——— —
vanishes with increasin

2_2(F_T)NE[X72L]
4(277 _ 2—?)2

where M is a random variable arbitrarily distributed in the det..., 29}, If W, is zero

Prob (M £ Mn) < (47)

mean, white and Gaussian with variangg then the following doubly exponential decay, with

increasing block size, of the probability of error holds:
T -7 T—r)n 2
Prob <M # Mn) S e_ﬁz(%Q —2 )2( ) —“/) (48)

where~ and 5 are positive real constants given by (9) and (10), respagtiv

Notice that Corollary 4.1 shows that, in the presence ofannify quantized feedback with
sensitivity 5y, any rater strictly less tharp(c?,, P%, ) allows for reliable transmission. This
implies that the properties (36)-(37), along with the casans derived in Section Ill, hold for
uniformly quantized feedback. In particular, the achidgatate of reliable transmission of the
coding scheme of Fig 4 degrades gracefully as a continumdifun of the quantizer sensitivity

oy (see the numerical example portrayed in Fig 3).

V. CODING AND DECODING IN THE PRESENCE OF FEEDBACK CORRUPTED BY(JNDED

NOISE.

From Corollary 4.1, we conclude that there exist simple iekptoding strategies based on
Schalkwijk-Kailath’'s framework that, even in the preserafeuniformly quantizedfeedback,
provide positive rates with positive error exponents. lis thection, we aim at designing coding
schemes in the presence of feedback corrupted by boundsel. Adie main result of this Section
is discussed in Section V-A, where we describe a commupitcattheme whose structure is that
of Fig 5. In addition, we analyze the performance of such a&mseEhin the presence of power

constraints at the input of the forward and backward chanfidle proposed scheme retains the
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simplicity of the Schalkwijk-Kailath scheme [9], but, in mwast to the original scheme (which
breaks down in the presence of noise in the backward link¢8ti@n 111.D]), achieves a positive
rate of reliable communication and is in fact capacity aghig in the limit of high SNR in the
backward link (assuming white Gaussian noise in the forwdrannel). The scheme proposed
in Section V-A also guarantees that, if the forward chanse@dditive, white and Gaussian, then
the probability of error converges to zero as a doubly exptakfunction of the block length.

The main results of this Section are stated in Theorem 5.1.

A. Performance in the presence of a power constraint at tpetiof the backward channel.

For the remainder of this Section, we will define a coding sehevhose structure is that
of Fig 5. The additive nois&, in the feedback link is arbitrarily distributed, boundediahe

tightest upper-bound to its amplitude is defined below:
Gs inf{aw € R5¢ : Prob(|S;| > o) =0,t > 0}
meaning that the following holds:
Prob(|S;] <ag)=1,t>0

The following remark will be used in the construction of a itmgdscheme with the structure
of Fig 5.
Remark 5.1:Let 55 be a positive real constant arff] be a real valued stochastic process

satisfying |S;| < as with probability one. Given a positive real parametgr, the following
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holds with probability one:
o
5o Qo (814 Qu) = @, (V) (49)
where@); is given by:
o
Qi = Py (—SY;) (50)
oy

The schematic representation of the equivalence exprass&emark 5.1 is displayed in Fig 6.
In such a schemes; is the bounded additive noise at the backward channel whti@,.

Aiming at constructing a coding scheme according to thectire of Fig 5, we use Remark
5.1 to obtain a new coding strategy by substituting the faekguantizer®;,, of Fig 4 with
the equivalent additive noise channel diagram of Fig 6. Téwilting scheme, along with the
encoding and decoding strategy of Section IV, provides atswl to the problem of designing
encoders and decoders in the presence of an additive (bdundese backward channel (see
Fig 7). Under such a design strategy, becomes a design parameter. Notice that viewings
a design knob is in contrast with the framework of SectionwWieres,, was a given constant.

Regarding the role ofy, we have shown in (36) that as, approaches zero the achievable
rate of reliable transmission converges to a positive valech, in the case wher#@/; is white
Gaussian, coincides with capacity. However, for any givesitpve realcs, the smallergy the
larger the scaling constalgrg in (50) and that may lead tQ; having an arbitrarily large second
moment. In Theorem 5.1, we show that the function definedvbelolves the aforementioned
problem by providing a suitable choice fey,, in the presence of power constraints at the input
of the forward and backward channels.

Definition 5.1: Let oy, 05, Px and P, be given positive real constants, th?g symbolizes

a power constraint at the input of the backward chanpel Below, we define the function
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I': R‘éo — R, which we will use as a selection for the design parameter

o
T (ow, s, Px, Po) = (Px + ow) ﬁ, Py > o (51)
Q — US§

The following Theorem is one of the main results of this paper
Theorem 5.1:Let oy, P%, P3 andag be positive constants satisfyind (ow, 7s, Px, Py)’ <
P{ andas < Pg. In addition, select a positive transmission ratand a positive real constant

r satisfyingr < 7 < o(c%,, P)2<v5V)|5V:r(aw,aS,Px,PQ)- For every positive integer block length

n, the coding scheme of Fig 7, alternatively described by-(48) and (50), leads to:

EXJ]<|Px+ 272 -27) | ,0<t<n (52)
~—_————

vanishes with increasing

_P —a's _ —
ElQ) < | Ppro @75 (or _ o7 0<t< 53
Q7] < Q+¥ Px+UW( )| ,0<t<n (53)

-

~
vanishes with increasing

2_2(F_T)nE[X72L]
4(277 _ 2—?)2

Prob (M 4 Mn) < (54)



where M is a random variable arbitrarily distributed in the det..., 29}, If W, is zero
mean, white and Gaussian with variangg then the following doubly exponential decay, with

increasing block size, of the probability of error holds:

Prob (M # 11, < k(22 -

where~ and g are positive real constants given by (9) and (10), respalgtiwherea, is given
by the assumed selectiay = I' (oW, s, Px, Pg).

Proof: The inequalities (52), (54) and (55) follow directly from ©@bary 4.1. In order to
arrive at (53), we start by noticing that we can use the tudargnequality to find the following
inequalities:

1

(E[Y2)? < (E[X)? +ow (56)

(E [Q?])% < Z—i (E[YE])% +ag (57)

In addition, substitution of (56) in (57), leads to:

_ 2
Bl0f) < (2 (BLXY + ow) + a5 ) (58)
oy
which, from (52), implies the following:
_ 2
ElQ7] < <;—S (Px+27 (2 —27") +ow) + 5—3) (59)
\%

The proof is complete since (53) follows by substituting ohoiceay = I' (ow, s, Px, Pg)
in (59).0
Under the conditions of Theorem 5.1, including our choicdhef design parameter,, the

following limit holds:

1 P?
lim o(oyy, P, 0v)]| = —log, (1 + U—f) , ow >0,Px >0,Py >0 (60)

et sv=t(owos.Pxre) ~ 3 3

Notice that (60) leads to the conclusion that, under ourashof 5y, the performance of the
scheme of Theorem 5.1 (see Fig 7) degrades gracefully asctidnrof 4, in terms of both
the rate and the error exponent.Uf; is white Gaussian then (60) indicates thatsastends

to zero, the scheme of Theorem 5.1 can be used to reliably concate at a rate arbitrarily



1.5

1
~log,(5) —

0.5

Fig. 8. Plot of o(ofy, P%,ov)|
ands.

. 2 2 _ .
oy =T(ow 75, Px Po) usingoyy =1, Px =4 andag € [0,1), for Py taking valuesl, 2, 4
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Fig. 9. A coding scheme equivalent to the one described by7Fig

close to capacity. Moreover, such a conclusion holds in tkegnce of an arbitrarily low power
constraint at the backward channel. The plot of Fig 8 displagw the achievable rate changes
as a function ofrg, under the choice, =I' (ow, ds, Px, Pg). Such a plot also illustrates that
by increasingP;, we can reduce the sensitivity of the achievable rate, o&lbédi transmission,

relative to variations irvg.

B. Further comments on the location of the one-step feedbaldy

In the framework of Fig 7, the one-step delay block is locaafiér the feedback decoder.

However, we should stress that, since the feedback decedieng-invariant, our coding scheme



would be unaltered if we had placed the delay blbeiforeas indicated in Fig 9. Indeed, the
diagrams of Fig 7 and 9 are equivalent, implying that Theoteinholds also for the coding

scheme of Fig 9.

VI. CONCLUSIONS

We derived simple schemes for reliable communication owehige noise forward channel, in
the presence of corrupted feedback. Both the case of unifurantization noise and the case of
additive bounded noise in the backward link were consideseere, in the latter case, encoding
at the input to the backward channel is allowed. The schenss 8een to achieve a positive
rate of reliable communication, and in fact be capacityi&adhg in the presence of an additive
white Gaussian forward channel, in the limit of small noise lligh SNR when encoding is
allowed) in the backward link. In addition, still under thesamption that the forward channel is
additive white Gaussian, the proposed schemes guarargethéhprobability of error converges
to zero as a doubly exponential function of the block length.

We believe that our approach to the construction and arsabfstoding schemes carries over
naturally to the case where the noise in the forward chasm@bn-white. In this case, we expect
to obtain variations on the schemes in [4] that are analogoukose in the present work and

whose gap to capacity behaves similarly.
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