Armand M. Makowski

ECE & ISR/HyNet
University of Maryland at College Park
armand@isr.umd.edu

RANDOM GRAPHS	

Graph
$$G = (V, E)$$

- A graph G = (V, E) with set V of nodes and edge set $E \subseteq V \times V$
 - Undirected

$$(x,y) \in E \quad \text{iff} \quad (y,x) \in E$$

- No self-loop

$$(x,x) \not\in E$$

• Convention

$$V = \{1, \dots, n\} = V_n$$

An algebraic view $A \equiv (V, E)$

• Adjacency matrix of G = (V, E) is the $n \times n$ matrix $\mathbf{A} = (a_{xy})$

$$a_{xy} = \begin{cases} 1 & \text{if } (x,y) \in E \\ 0 & \text{if } (x,y) \notin E \end{cases}$$

- Undirected - Symmetric matrix

$$a_{xy} = a_{yx}, \quad x, y = 1, \dots, n$$

- No self-loop - Zero diagonal elements

$$a_{xx} = 0, \quad x = 1, \dots, n$$

Counting edges and graphs

• There are at most

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

possible edges, i.e., for any $G = (V_n, E)$,

$$|E| \le \binom{n}{2}$$

• If $\mathcal{G}(V_n)$ denotes the collection of all graphs on V_n , then

$$|\mathcal{G}(V_n)| = 2^{\binom{n}{2}} = 2^{\frac{n(n-1)}{2}}$$

Graph properties

• A graph property A for graphs on V_n is simply a subset \mathcal{A} of $\mathcal{G}(V_n)$, i.e.,

$$\mathcal{A} \subseteq \mathcal{G}(V_n)$$

• Example 1 – Graph connectivity

$$\mathcal{A}_{\operatorname{Con}} := \{ (V_n, E) \in \mathcal{G}(V_n) : (V_n, E) \text{ connected} \}$$

• Example 2 – Absence of isolated nodes

 $\mathcal{A}_{ ext{No isolated node}}$

 $:= \{(V_n, E) \in \mathcal{G}(V_n) : (V_n, E) \text{ contains no isolated node}\}$

Monotone graph properties

• A graph property A for graphs on V_n is said to be **monotone** increasing if the corresponding subset $A \subset \mathcal{G}(V_n)$ has the following monotonicity property: For (V_n, E) and (V_n, E') in $\mathcal{G}(V_n)$, the conditions

$$E \subset E'$$
 and $(V_n, E) \in \mathcal{A}$

imply

$$(V_n, E) \in \mathcal{A}$$

• Graph connectivity and absence of isolated nodes are monotone increasing properties

Random graphs

• The finite set $\mathcal{G}(V_n)$ has a natural measurable structure, namely

$$(\mathcal{G}(V_n), \mathcal{P}(\mathcal{G}(V_n)))$$

• A random graph over the vertex set V_n is a probability measure P_n defined on this measurable space $(\mathcal{G}(V_n), \mathcal{P}(\mathcal{G}(V_n)))$ with pmf

$$\{P_n(G), G = (V_n, E) \in \mathcal{G}(V_n)\}$$

- Many different ways to generate the pmf P_n
 - Structure!

• A more concrete definition: A random graph over the vertex set V_n is a $\mathcal{G}(V_n)$ -valued rv \mathbb{G} defined on some probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, i.e.,

$$\mathbb{G}:\Omega\to\mathcal{G}(V_n)$$

with

$$P_n(G) = \mathbb{P}\left[\mathbb{G} = G\right], \quad G = (V_n, E) \in \mathcal{G}(V_n).$$

• For any graph property A on V_n ,

$$P_n(A) = \mathbb{P}\left[\mathbb{G} \in \mathcal{A}\right] = \sum_{G \in \mathcal{A}} \mathbb{P}\left[\mathbb{G} = G\right]$$

Examples (Non-geometric)

- Erdős-Renyi graphs
 - $\mathbb{G}(n;m) \ (1 \le m \le \binom{n}{2})$
 - $\mathbb{G}(n;p) \ (0 \le p \le 1)$
- Random intersection graphs
 - $\mathbb{K}(n; K, p) \ (K = 1, 2, \dots \text{ and } 0 \le p \le 1)$

Geometry!

- A population of n nodes located at X_1, \ldots, X_n in a **compact** convex region $\Omega \subset \mathbb{R}^d$
 - Unit cube $[0,1]^d$, unit ball
- Assume X_1, \ldots, X_n i.i.d. distributed according to some non-atomic probability measure μ on Ω
 - The pm μ admits a density $f: \Omega \to \mathbb{R}_+$, so that

$$\mu(B) = \int_{B} f(\boldsymbol{x}) d\boldsymbol{x}, \quad B \in \mathcal{B}(\Omega)$$

• Metric $\delta: \mathbb{R}^d \to \mathbb{R}_+$

$$-\ell_p \ (1 \le p \le \infty)$$

Examples (Geometric)

- Waxman graphs
 - W(n; a) (a > 0)
- \bullet Random K-nearest neighbor graphs
 - $\mathbb{N}(n;K) \ (K=1,2,\ldots)$
- Random Yao graphs
 - $\mathbb{Y}(n;\theta) \ (0 < \theta < 2\pi)$
- Metric random graphs (a.k.a. geometric random graphs)
 - $\mathbb{G}(n;\tau) \ (\tau > 0)$

The search for typicality

• Consider a family of random graphs

$$\{\mathbb{G}(n;\theta), \ \theta \in \Theta; \ n=2,3,\ldots\}$$

and for some graph property A, define

$$P_A(n;\theta) = \mathbb{P}\left[\mathbb{G}(n;\theta) \in \mathcal{A}\right]$$

• Find a scaling function $\theta : \mathbb{N}_0 \to \Theta : n \to \theta_n$ such that either

$$\lim_{n\to\infty} P_A(n;\theta_n) = 1$$

or

$$\lim_{n\to\infty} P_A(n;\theta_n) = 0$$

• Often, there exists a separation of scales via a **critical** scaling function

$$\theta^*: \mathbb{N}_0 \to \Theta: n \to \theta_n$$

in the form of a **zero-one** law

$$\lim_{n \to \infty} P_A(n; \theta_n) = \begin{cases} 0 & \text{if } \theta_n \text{ much smaller than } \theta_n^* \\ 1 & \text{if } \theta_n \text{ much larger than } \theta_n^* \end{cases}$$

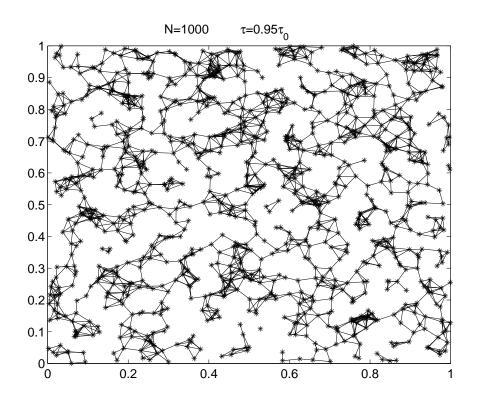
- Basic questions
 - Identify θ^* for property A of interest
 - Give precise meaning to statements " θ_n much smaller than θ_n^{\star} " and " θ_n much larger than θ_n^{\star} "

GRG $\mathbb{G}_d(n;\tau)$ on $\Omega \subset \mathbb{R}^d$

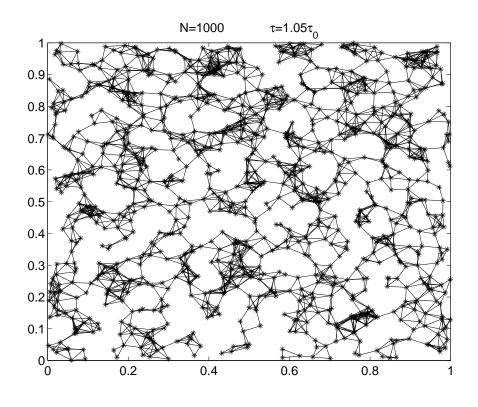
- A population of n nodes located at X_1, \ldots, X_n in **compact** convex region $\Omega \subset \mathbb{R}^d$
- Nodes i and j are connected if $\|\boldsymbol{X}_i \boldsymbol{X}_j\| \leq \tau$
- Assume X_1, \ldots, X_n i.i.d. and uniformly distributed on Ω

- Applications to statistical physics, cluster analysis, hypothesis testing and wireless networks
- Appel and Russo, Penrose, Gupta and Kumar, etc.

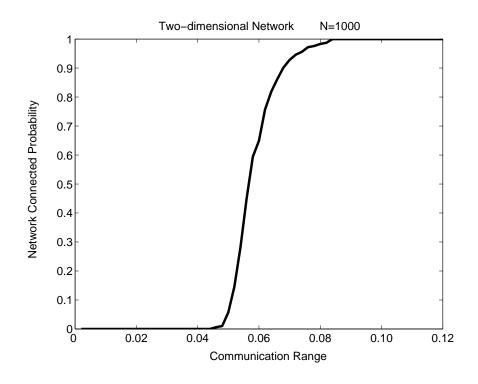
Not yet connected



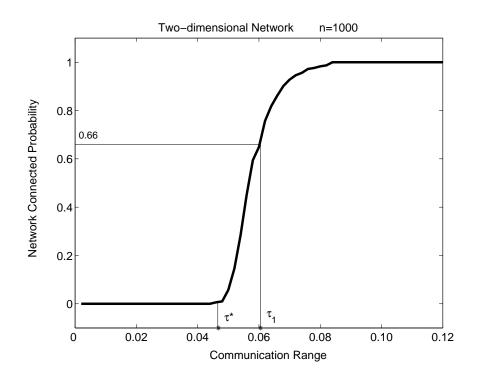
Just connected

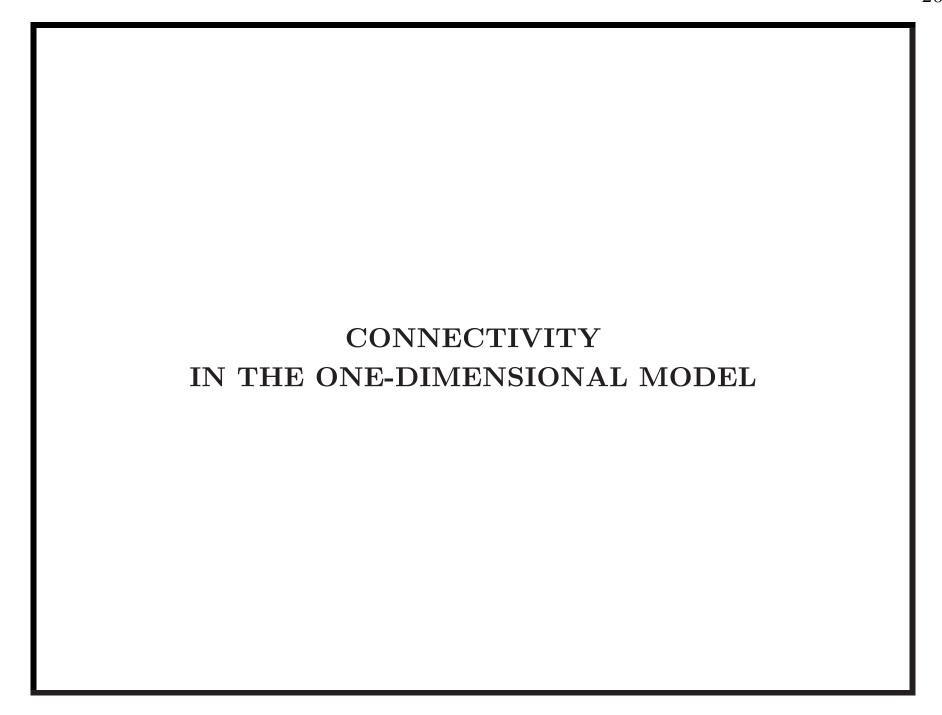


Transitions! Transitions!



Phase transitions





GRG $\mathbb{G}(n;\tau)$ **on** [0,1]

- A population of n nodes located at X_1, \ldots, X_n in [0, 1]
- Nodes i and j are connected if $|X_i X_j| \le \tau$
- Assume X_1, \ldots, X_n i.i.d. and uniformly distributed on [0, 1]

• E.g., Highway networks

Graph connectivity

• For each $n = 2, 3, \ldots$, write

$$P(n;\tau) := \mathbb{P}\left[\mathbb{G}(n;\tau) \text{ is connected}\right], \quad \tau \ge 0$$

• Kendall and Moran (1963), Godehardt and Jaworski (1996), Desai and Manjunath (2002)

$$P(n;\tau) = \sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} \left((1-k\tau)_+ \right)^n$$

Order statistics

• Let $X_{n,1}, \ldots, X_{n,n}$ denote the locations of the n nodes arranged in **increasing** order, i.e.,

$$X_{n,1} \leq \ldots \leq X_{n,n}$$

with the convention $X_{n,0} = 0$ and $X_{n,n+1} = 1$.

• Also define

$$L_{n,k} := X_{n,k} - X_{n,k-1}, \quad k = 1, \dots, n+1.$$

• For all $\tau \in (0,1)$,

$$P(n;\tau) = \mathbb{P}\left[L_{n,k} \le \tau, \ k = 2, \dots, n\right]$$

A useful fact

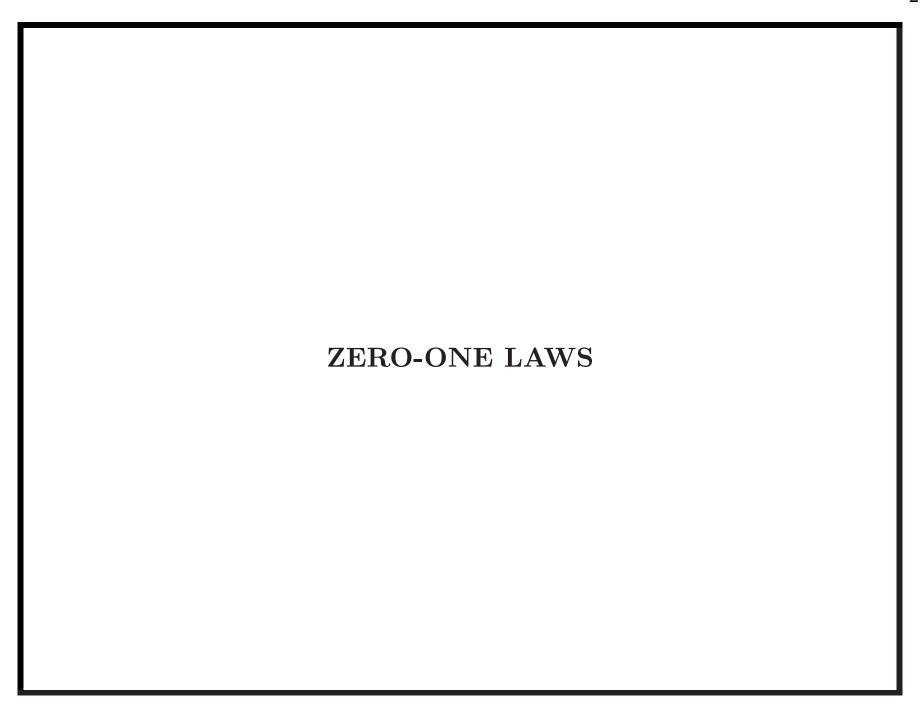
• For any subset $I \subseteq \{1, \ldots, n\}$,

$$\mathbb{P}[L_{n,k} > t_k, \ k \in I] = \left(1 - \sum_{k \in I} t_k\right)_+^n, \quad t_k \in [0,1], \ k \in I$$

with the notation

$$x_{+}^{n} = \begin{cases} x^{n} & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0. \end{cases}$$

Leads to closed form expression for $P(n;\tau)$ by the mutual inclusion-exclusion principle



• Does there exists a separation of scales via a **critical** scaling function

$$\tau^{\star}: \mathbb{N}_0 \to \mathbb{R}_+: n \to \tau_n$$

in the form of a **zero-one** law

$$\lim_{n \to \infty} P(n; \tau_n) = \begin{cases} 0 & \text{if } \tau_n \text{ much smaller than } \tau_n^* \\ \\ 1 & \text{if } \tau_n \text{ much larger than } \tau_n^* \end{cases}$$

Range functions

No loss of generality in writing a range function

$$\tau: \mathbb{N}_0 \to \mathbb{R}_+: n \to \tau_n$$

in the form

$$\tau_n = \frac{1}{n} \left(\log n + \alpha_n \right), \quad n = 1, 2, \dots$$
 (1)

for some deviation function

$$\alpha: \mathbb{N}_0 \to \mathbb{R}: n \to \alpha_n$$

$$\alpha_n = n\tau_n - \log n, \quad n = 1, 2, \dots$$

Zero-one law for graph connectivity

Theorem 1 For any range function $\tau : \mathbb{N}_0 \to \mathbb{R}_+$ written in the form (1), we have

$$\lim_{n \to \infty} P(n; \tau_n) = \begin{cases} 0 & \text{if } \lim_{n \to \infty} \alpha_n = -\infty \\ \\ 1 & \text{if } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases}$$

Critical scaling

$$\tau_n^{\star} = \frac{\log n}{n}, \quad n = 1, 2, \dots$$

acts as **boundary** in the space of scalings.

Several proofs

- Several representations for $P(n;\tau)$
- Method of first and second moments applied to the number of breakpoint users
- An interpolation result
 - Results by P. Lévy (1939) for maximal spacings
 - Poisson convergence for the the number of breakpoint users

A proof of Theorem 1
by counting
the number of breakpoint nodes

Breakpoint nodes

- For each i = 1, ..., n, node i is said to be a **breakpoint** node in $\mathbb{G}(n; \tau)$ whenever
 - it is not the leftmost node in [0,1] and
 - there is no node in the random interval $[X_i \tau, X_i]$.
- The number $C_n(\tau)$ of breakpoint nodes in $\mathbb{G}(n;\tau)$ is given by

$$C_n(\tau) = \sum_{k=2}^{n} \chi_{n,k}(\tau)$$

with indicators

$$\chi_{n,k}(\tau) := \mathbf{1} [L_{n,k} > \tau], \quad k = 1, \dots, n+1.$$

• For all $\tau \in (0,1)$,

$$P(n;\tau) = \mathbb{P}[L_{n,k} \le \tau, k = 2, ..., n]$$

= $\mathbb{P}[C_n(\tau) = 0].$

For all $\tau \in (0,1)$,

$$C_n(\tau) + 1 = \text{Number of connected components}$$

in $\mathbb{G}(n;\tau)$

For future reference

• For all $\tau \in (0,1)$ and all $n = 1, 2, \ldots$,

$$\mathbb{E}\left[C_n(\tau)\right] = (n-1)\left(1-\tau\right)^n$$

and

$$\mathbb{E}\left[C_n(\tau)^2\right] = \mathbb{E}\left[C_n(\tau)\right] + (n-1)(n-2)\left(1-2\tau\right)_+^n$$
$$= (n-1)\left(1-\tau\right)^n + (n-1)(n-2)\left(1-2\tau\right)_+^n$$

• Observe that

$$C_n(\tau)^2 = \left(\sum_{k=2}^n \chi_{n,k}(\tau)\right)^2$$

$$= \sum_{k=2}^n \chi_{n,k}(\tau)$$

$$+ \sum_{k,\ell=2,k\neq\ell}^n \chi_{n,k}(\tau)\chi_{n,\ell}(\tau)$$

• For all $k, \ell = 1, \ldots, n$, with $k \neq \ell$,

$$\mathbb{E}\left[\chi_{n,k}(\tau)\right] = \mathbb{P}\left[L_{n,k} > \tau\right] = (1-\tau)^n$$

and

$$\mathbb{E}\left[\chi_{n,k}(\tau)\chi_{n,\ell}(\tau)\right] = \mathbb{P}\left[L_{n,k} > \tau, L_{n,\ell} > \tau\right] = (1 - 2\tau)_+^n$$

Basic inequalities (I)

For any N-valued rv X with $\mathbb{E}[X] < \infty$, we have

$$1 - \mathbb{E}\left[X\right] \le \mathbb{P}\left[X = 0\right]$$

A proof.

Note that

$$\mathbb{E}[X] = \sum_{x=1}^{\infty} x \mathbb{P}[X = x]$$

$$\geq \sum_{x=1}^{\infty} \mathbb{P}[X = x]$$

$$= \mathbb{P}[X > 0]$$

Basic inequalities (II)

For any N-valued rv X with $0 < \mathbb{E}[X^2] < \infty$, we have

$$\mathbb{P}\left[X = 0\right] \le 1 - \frac{\mathbb{E}\left[X\right]^2}{\mathbb{E}\left[X^2\right]} = \frac{\operatorname{Var}[X]}{\mathbb{E}\left[X^2\right]}$$

A proof

By Cauchy-Schwartz,

$$\mathbb{E}[X]^{2} = \mathbb{E}[\mathbf{1}[X \neq 0]X]^{2}$$

$$\leq \mathbb{E}[\mathbf{1}[X \neq 0]^{2}]\mathbb{E}[X^{2}]$$

so that

$$\frac{\mathbb{E}\left[X\right]^2}{\mathbb{E}\left[X^2\right]} \le \mathbb{P}\left[X \ne 0\right]$$

A first proof of Theorem 1

Method of **first** moment:

$$1 - \mathbb{E}\left[C_n(\tau)\right] \le P(n;\tau)$$

for each $n = 2, 3, \ldots$ and τ in [0, 1].

Method of **second** moment:

$$P(n;\tau) \le 1 - \frac{\mathbb{E}\left[C_n(\tau)\right]^2}{\mathbb{E}\left[C_n(\tau)^2\right]}$$

for each $n = 2, 3, \ldots$ and τ in [0, 1].

The zero-one law follows if for any range function $\tau : \mathbb{N}_0 \to \mathbb{R}_+$ of the form (1), we show that

$$\lim_{n \to \infty} \mathbb{E}\left[C_n(\tau_n)\right] = 0 \quad \text{if} \quad \lim_{n \to \infty} \alpha_n = \infty$$

and

$$\lim_{n \to \infty} \frac{\mathbb{E}\left[C_n(\tau_n)^2\right]}{\mathbb{E}\left[C_n(\tau_n)\right]^2} = 1 \quad \text{if} \quad \lim_{n \to \infty} \alpha_n = -\infty.$$

Easily done once we note that

$$\mathbb{E}\left[C_n(\tau)\right] = (n-1)\left(1-\tau\right)_+^n$$

and

$$\frac{\mathbb{E}\left[C_n(\tau)^2\right]}{\mathbb{E}\left[C_n(\tau)\right]^2} = \frac{1}{(n-1)(1-\tau)_+^n} + \frac{(n-2)}{(n-1)} \frac{(1-2\tau)_+^n}{(1-\tau)_+^{2n}}.$$

A proof of Theorem 1 by limiting results on maximal spacings

Maximal spacing

• The **maximal spacing** associated with X_1, \ldots, X_n is given by

$$M_n := \max (L_{n,k}, \ k = 2, \dots, n)$$

• For all $\tau \in (0,1)$,

$$P(n;\tau) = \mathbb{P}[L_{n,k} \le \tau, k = 2, ..., n]$$

= $\mathbb{P}[M_n \le \tau].$

Variations on a theme by Lévy (1939)

Theorem 2 It holds that

$$\frac{M_n}{\tau_n^{\star}} \stackrel{P}{\to} {}_n 1$$

and

$$nM_n - \log n \Longrightarrow_n \text{Gumbel } \Lambda$$

The \mathbb{R} -valued rv X is Gumbel (Λ) if

$$\mathbb{P}\left[X \le x\right] = e^{-e^{-x}}, \quad x \in \mathbb{R}$$

Relevance?

For each x in \mathbb{R} , consider the range function $\sigma(x) : \mathbb{N}_0 \to \mathbb{R}_+$ given by

$$\sigma_n(x) = \left(\frac{\log n + x}{n}\right)_+, \quad n = 1, 2, \dots$$

and

$$\sigma_n(x) = \frac{\log n + x}{n} = \tau_n^* + \frac{x}{n}$$

for n large enough.

For n large enough,

$$P(n; \sigma_n(x)) = \mathbb{P}[M_n \le \sigma_n(x)]$$

$$= \mathbb{P}\left[M_n \le \frac{\log n + x}{n}\right]$$

$$= \mathbb{P}[nM_n - \log n \le x]$$

$$\to_n e^{-e^{-x}}$$

by Theorem 2.

Interpolating the zero-one law

Theorem 3 For each x in \mathbb{R} , we have

$$\lim_{n \to \infty} P(n; \sigma_n(x)) = e^{-e^{-x}} =: g(x)$$

- Godehardt and Jaworski (1996)
- Subsumes the zero-one law (Theorem 1)
- A natural question: Where is Theorem 3 coming from?

Theorem 3 implies Theorem 1

• Pick x in \mathbb{R} . With $\lim_{n\to\infty} \alpha_n = \infty$, we have $x \leq \alpha_n$ for $n \geq n(x)$, whence

$$\sigma_n(x) \le \tau_n, \quad n \ge n(x)$$

• Thus, by monotonicity,

$$P(n; \sigma_n(x)) \le P(n; \tau_n), \quad n \ge n(x)$$

 \bullet Letting n go to infinity, we have

$$g(x) = \lim_{n \to \infty} P(n; \sigma_n(x)) \le \liminf_{n \to \infty} P(n; \tau_n)$$

and the one-law follows since

$$1 = \lim_{x \to \infty} g(x) \le \liminf_{n \to \infty} P(n; \tau_n)$$

• Pick x in \mathbb{R} . With $\lim_{n\to\infty} \alpha_n = -\infty$, we have $\alpha_n \leq x$ for $n \geq n(x)$, whence

$$\tau_n \le \sigma_n(x), \quad n \ge n(x)$$

• Thus, by monotonicity,

$$P(n; \tau_n) \le P(n; \sigma_n(x)), \quad n \ge n(x)$$

 \bullet Letting n go to infinity, we have

$$\limsup_{n \to \infty} P(n; \tau_n) \le g(x) = \lim_{n \to \infty} P(n; \sigma_n(x))$$

and the zero-law follows since

$$\limsup_{n \to \infty} P(n; \tau_n) \le \lim_{x \to \infty} g(x) = 0$$

Strengthening Theorem 1

Theorem 4 For any range function $\tau : \mathbb{N}_0 \to \mathbb{R}_+$ written in the form (1), we have

$$\lim_{n \to \infty} P(n; \tau_n) = \begin{cases} 0 & \text{iff } \lim_{n \to \infty} \alpha_n = -\infty \\ 1 & \text{iff } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases}$$

Preparing the proof of Theorem 2

For each $n = 2, 3, \ldots$, write

$$\Lambda_n = nM_n - \log n$$

so that

$$\frac{M_n}{\tau_n^*} = \frac{1}{\tau_n^*} \cdot \frac{1}{n} \left(\Lambda_n + \log n \right)$$
$$= 1 + \frac{\Lambda_n}{\log n}$$

Thus, $\Lambda_n \Longrightarrow_n \Lambda$ implies

$$\frac{\Lambda_n}{\log n} \Longrightarrow_n 0 \text{ whence } \frac{M_n}{\tau_n^*} \stackrel{P}{\to} {}_n 1.$$

$$\frac{M_n}{\tau_n^{\star}} \stackrel{P}{\rightarrow} {}_n 1$$
 implies

Lemma 1 The threshold function τ^* is a **weak** threshold in the sense that

$$\lim_{n \to \infty} P(n; \tau_n) = 0 \quad \text{if} \quad \lim_{n \to \infty} \frac{\tau_n}{\tau_n^*} = 0$$

while

$$\lim_{n \to \infty} P(n; \tau_n) = 1 \quad \text{if} \quad \lim_{n \to \infty} \frac{\tau_n}{\tau_n^*} = \infty$$

for range function $\tau : \mathbb{N}_0 \to \mathbb{R}_+$.

$$\frac{M_n}{\tau_n^{\star}} \stackrel{P}{\rightarrow} {}_n 1$$
 implies

Lemma 2 The threshold function τ^* is a **strong** threshold in the sense that

$$\lim_{n \to \infty} P(n; c\tau_n^*) = \begin{cases} 0 & \text{if } 0 < c < 1 \\ \\ 1 & \text{if } 1 < c. \end{cases}$$

Best possible result

 $Zero - one Law \Longrightarrow Strong threshold \Longrightarrow Weak threshold$

A very strong threshold

Theorem 5 For any range function $\tau : \mathbb{N}_0 \to \mathbb{R}_+$ written in the form (1), we have

$$\lim_{n \to \infty} P(n; \tau_n) = \begin{cases} 0 & \text{iff } \lim_{n \to \infty} \alpha_n = -\infty \\ 1 & \text{iff } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases}$$

$$\tau_n = \frac{1}{n} (\log n + \alpha_n), \quad n = 1, 2, \dots$$

Appropriate to call the threshold function τ^* a **very strong** threshold – Early indicator that the phase transition will be sharp

A useful representation of the spacings

Consider a sequence $\{\xi, \xi_n, n = 1, 2, ...\}$ of i.i.d. \mathbb{R}_+ -valued rvs with $\xi > 0$ a.s. and set

$$T_n = \xi_1 + \ldots + \xi_n, \quad n = 1, 2, \ldots$$

Lemma 3 With ξ exponentially distributed with parameter 1, we have

$$(L_{n,1},\ldots,L_{n,n+1}) =_{st} \left(\frac{\xi_1}{T_{n+1}},\ldots,\frac{\xi_{n+1}}{T_{n+1}}\right)$$

A proof of Theorem 2

Fix $n = 1, 2, \dots$ We have

$$M_n = \max_{k=2,...,n} L_{n,k}$$

$$=_{st} \max_{k=2,...,n} \left(\frac{\xi_k}{T_{n+1}}\right)$$

$$= \frac{1}{T_{n+1}} \left(\max_{k=2,...,n} \xi_k\right)$$

Therefore,

$$nM_n - \log n =_{st} \frac{n}{T_{n+1}} \left(\max_{k=2,\dots,n} \xi_k \right) - \log n$$

$$= \frac{n}{T_{n+1}} \left(\max_{k=2,\dots,n} \xi_k - \log n \right)$$

$$+ \left(\frac{n}{T_{n+1}} - 1 \right) \cdot \log n$$

with

$$\left(\frac{n}{T_{n+1}} - 1\right) \cdot \log n = \frac{n}{T_{n+1}} \left(1 - \frac{T_{n+1}}{n}\right) \cdot \log n$$

$$= \frac{n}{T_{n+1}} \cdot \sqrt{n} \left(1 - \frac{T_{n+1}}{n}\right) \cdot \frac{\log n}{\sqrt{n}}$$

But, by SLLNs

$$\lim_{n \to \infty} \frac{T_{n+1}}{n} = 1 \quad a.s.$$

while CLT yields

$$\sqrt{n}\left(\frac{T_{n+1}}{n}-1\right) \Longrightarrow_n \sigma^2 U$$

with $U =_{st} N(0,1)$ and $\sigma^2 = 1$.

Therefore,

$$\left(\frac{n}{T_{n+1}} - 1\right) \cdot \log n = \frac{n}{T_{n+1}} \cdot \sqrt{n} \left(1 - \frac{T_{n+1}}{n}\right) \cdot \frac{\log n}{\sqrt{n}} \Longrightarrow_n 0$$

Finally, for each x in \mathbb{R} ,

$$\mathbb{P}\left[\max_{k=2,\dots,n} \xi_k - \log n \le x\right] = \mathbb{P}\left[\xi_k \le x + \log n, \ k = 2,\dots n\right]$$

$$= \prod_{k=2}^n \mathbb{P}\left[\xi_k \le x + \log n\right]$$

$$= \left(1 - e^{-(x + \log n)}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n}e^{-x}\right)^{n-1}$$

$$\to a(x)$$

In short,

$$\max_{k=2,...,n} \xi_k - \log n \Longrightarrow_n \text{Gumbel } \Lambda$$

THE WIDTH OF THE PHASE TRANSITION AND POISSON CONVERGENCE

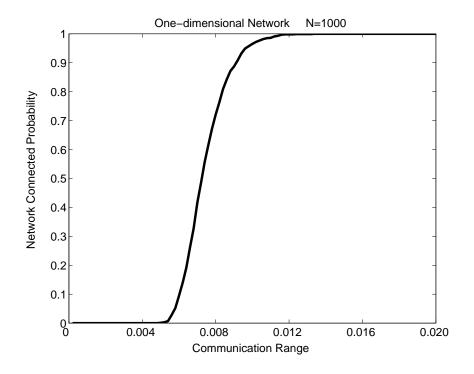
GRG
$$\mathbb{G}(n;\tau)$$
 on $[0,1]$

- A population of n nodes located at X_1, \ldots, X_n in [0, 1]
- Nodes i and j are connected if $|X_i X_j| \le \tau$
- Assume X_1, \ldots, X_n i.i.d. and uniformly distributed on [0, 1]

For each $n = 2, 3, \ldots$, we have

 $P(n;\tau) := \mathbb{P}\left[\mathbb{G}(n;\tau) \text{ is connected}\right], \quad \tau \ge 0$

Phase transitions



The width of the phase transition

• For n = 2, 3, ... and $a \in (0, 1)$, let $\tau_n(a)$ denote the **unique** solution to

$$P(n;\tau) = a, \quad \tau \in (0,1).$$

• Also define the transition width

$$\delta_n(a) := \tau_n(1-a) - \tau_n(a), \quad a \in (0, \frac{1}{2}).$$

Question – How does $\delta_n(a)$ vary with n large? Beyond Goel et al.

Main result – Very sharp asymptotics

Theorem 6 For every a in the interval (0,1),

$$\tau_n(a) = \frac{\log n}{n} - \log \left(\log \left(\frac{1}{a} \right) \right) \cdot \frac{1}{n} + o(n^{-1}).$$

Corollary 1 For every a in the interval $(0, \frac{1}{2})$, we have

$$\delta_n(a) = \log\left(\frac{\log a}{\log(1-a)}\right) \cdot \frac{1}{n} + o\left(n^{-1}\right)$$

Goel et al. (d=1)

• For **every** monotone graph property A,

$$\delta_{A,n}(a) = O\left(\sqrt{\frac{-\log a}{n}}\right).$$

• There exists some monotone graph property, say B, such that

$$\delta_{B,n}(a) = \Omega\left(\sqrt{\frac{-\log a}{n}}\right).$$

Theorem 6 gives **sharper** (and **exact**) asymptotics in the case of graph connectivity!

The big picture (revisited)

- Guessing Theorem 6 from Theorem 3
- Poisson convergence (Theorem 9)
 - Poisson approximation by Chen-Stein method
 - Theorem 9 implies Theorem 3 which implies Theorem 6
 - Information on rate of convergence, hence a handle on finite node graphs!

Range functions

No loss of generality in writing a range function

$$\tau: \mathbb{N}_0 \to \mathbb{R}_+: n \to \tau_n$$

in the form

$$\tau_n = \frac{1}{n} \left(\log n + \alpha_n \right), \quad n = 1, 2, \dots$$
 (2)

for some

$$\alpha: \mathbb{N}_0 \to \mathbb{R}: n \to \alpha_n$$

$$\alpha_n = n\tau_n - \log n, \quad n = 1, 2, \dots$$

Zero-one Law for graph connectivity

Theorem 1 For any range function $\tau : \mathbb{N}_0 \to \mathbb{R}_+$ written in the form (2), we have

$$\lim_{n \to \infty} P(n; \tau_n) = \begin{cases} 0 & \text{iff } \lim_{n \to \infty} \alpha_n = -\infty \\ 1 & \text{iff } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases}$$

Critical scaling

$$\tau_n^{\star} = \frac{\log n}{n}, \quad n = 1, 2, \dots$$

acts as **boundary** in the space of scalings.

Solving $P(n;\tau) = a$?

- Interpolate between 0 and 1 through mild fluctuations about $\tau^* : \mathbb{N}_0 \to \mathbb{R}_+$
- For each x in \mathbb{R} , consider the range function $\sigma(x) : \mathbb{N}_0 \to \mathbb{R}_+$ given by

$$\sigma_n(x) = \left(\frac{\log n + x}{n}\right)_+, \quad n = 1, 2, \dots$$

and

$$\sigma_n(x) = \frac{\log n + x}{n} = \tau_n^* + \frac{x}{n}$$

for n large enough.

Interpolating the zero-one law

Theorem 3 For each x in \mathbb{R} , we have

$$\lim_{n \to \infty} P(n; \sigma_n(x)) = e^{-e^{-x}} =: g(x)$$

Guessing Theorem 6 from Theorem 3

• For each x in \mathbb{R} , Theorem 3 yields the **approximation**

$$P(n; \sigma_n(x)) \simeq g(x)$$

for large enough n.

- The mapping $g: \mathbb{R} \to \mathbb{R}_+ : x \to g(x)$ is **strictly monotone** and **continuous** with $\lim_{x \to -\infty} g(x) = 0$ and $\lim_{x \to \infty} g(x) = 1$.
- Thus, for each $a \in (0,1)$, there exists a **unique** scalar x_a such that $g(x_a) = a$, namely

$$x_a = -\log\left(-\log a\right).$$

• Given $a \in (0,1)$, we find

$$P(n; \sigma_n(x_a)) \simeq a$$

for large n.

• By definition,

$$P(n; \tau_n(a)) = a$$

so that

$$P(n; \sigma_n(x_a)) \simeq P(n; \tau_n(a))$$

for large n.

• This strongly suggests that **asymptotically** $\sigma_n(x_a)$ and $\tau_n(a)$ behave **in tandem**, laying the grounds for the validity of

$$\tau_n(a) = \sigma_n(x_a) + o(n^{-1})$$

or equivalently,

$$\tau_n(a) = \frac{\log n}{n} - \log \left(\log \left(\frac{1}{a} \right) \right) \cdot \frac{1}{n} + o(n^{-1}).$$

Origins of Theorem 3?

- Property of maximal spacings (Lévy 1939)
 - Makes sense only for d=1

$$\lim_{n \to \infty} P(n; \sigma_n(x)) = \lim_{n \to \infty} \mathbb{P}\left[M_n \le \sigma_n(x)\right]$$

- Poisson convergence
 - Works (in principle) for all dimensions

$$\lim_{n \to \infty} P(n; \sigma_n(x)) = \lim_{n \to \infty} \mathbb{P}\left[C_n(\sigma_n(x)) = 0\right]$$

(Classical) Poisson convergence

For each $p \in [0, 1]$, let $\{B_n(p), n = 1, 2, ...\}$ denote a collection of **i.i.d.** $\{0, 1\}$ -valued (Bernoulli) rvs with

$$\mathbb{P}[B_n(p) = 1] = 1 - \mathbb{P}[B_n(p) = 0] = p, \quad n = 1, 2, \dots$$

and define

$$S_n(p) := B_1(p) + \ldots + B_n(p), \quad n = 1, 2, \ldots$$

$$S_n(p) =_{st} Bin(n; p)$$

Theorem 7 Consider a [0,1]-valued sequence $\{p_n, n = 1, 2, \ldots\}$ with

$$\lim_{n\to\infty} np_n = \lambda$$

for some $\lambda > 0$. Then, it holds that

$$S_n(p_n) \Longrightarrow_n \Pi(\lambda)$$

where $\Pi(\lambda)$ denotes a Poisson rv with parameter λ .

For n large,

$$p_n \sim \frac{\lambda}{n}$$
 and $S_n(p_n) \simeq_{st} \Pi(np_n)$

The Poisson paradigm

• For each r = 1, 2, ..., let

$$\{B_{r,k}(p_{r,k}), k = 1, \dots, k_r\}$$

denote a collection of $\{0,1\}$ -valued rvs, which are not necessarily independent, and write

$$S_r(p_{r,1},\ldots,p_{r,k_r}) = B_{r,1}(p_{r,1}) + \ldots + B_{r,k_r}(p_{r,k_r})$$

• A typical result takes the following form: With $\lim_{r\to\infty} k_r = \infty$, if

$$\lim_{r \to \infty} \left(\max_{k=1,\dots,k_r} p_{r,k} \right) = 0$$

and

$$\lim_{r \to \infty} (p_{r,1} + \ldots + p_{r,k_r}) = \lambda$$

for some $\lambda > 0$, then under additional conditions of vanishingly weak correlations,

$$S_r(p_{r,1},\ldots,p_{r,k_r}) \Longrightarrow_r \Pi(\lambda)$$

Thus,

$$\mathbb{E}\left[S_r(p_{r,1},\ldots,p_{r,k_r})\right] = p_{r,1} + \ldots + p_{r,k_r} \simeq \lambda$$

and

$$S_r(p_{r,1},\ldots,p_{r,k_r}) \simeq_{st} \Pi(\lambda)$$

Obvious ideas

Via pmfs:

$$\lim_{r \to \infty} \mathbb{P}\left[S_r(p_{r,1}, \dots, p_{r,k_r}) = x\right] = \frac{\lambda^x}{x!} e^{-\lambda}, \quad x \in \mathbb{N}$$

Via pgfs:

$$\lim_{r \to \infty} \mathbb{E}\left[z^{S_r(p_{r,1}, \dots, p_{r,k_r})}\right] = e^{-\lambda(1-z)}, \quad z \in \mathbb{R}$$

Via the method of moments: For each p = 0, 1, ...,

$$\lim_{r \to \infty} \mathbb{E}\left[S_r(p_{r,1}, \dots, p_{r,k_r})^p\right] = \mathbb{E}\left[\Pi(\lambda)^p\right]$$

Via the method of factorial moments – Brun's Sieve: For each $p=0,1,\ldots,$

$$\lim_{r \to \infty} \mathbb{E} \left[\prod_{\ell=0}^{p} \left(S_r(p_{r,1}, \dots, p_{r,k_r}) - \ell \right) \right] = \lambda^{p+1}$$

Total variation

For pmfs μ and ν on \mathbb{N} , with $X \sim \mu$ and with $Y \sim \nu$,

$$d_{TV}(\boldsymbol{\mu}; \boldsymbol{\nu}) := \frac{1}{2} \sum_{x=0}^{\infty} |\mu(x) - \nu(x)| = d_{TV}(X; Y)$$

This defines a distance on the space of all pmfs on \mathbb{N} !

For N-valued rvs $\{X, X_n, n = 1, 2, \ldots\}, X_n \Longrightarrow_n X$ if and only if

$$\lim_{n \to \infty} d_{TV}(X_n; X) = 0$$

The coupling inequality

Lemma 4 For pmfs μ and ν on \mathbb{N} , we have

$$d_{TV}(\boldsymbol{\mu}; \boldsymbol{\nu}) \leq \mathbb{P}\left[X \neq Y\right]$$

for any pair of \mathbb{N} -valued rvs X and Y, with $X \sim \mu$ and with $Y \sim \nu$, which are defined on a **common** probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

A pair of \mathbb{N} -valued rvs X and Y, with $X \sim \mu$ and with $Y \sim \nu$, which are defined on the **common** probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **coupling** for the pair of pmfs μ and ν .

$$d_{TV}(\boldsymbol{\mu}; \boldsymbol{\nu})$$

$$= \frac{1}{2} \sum_{x=0}^{\infty} |\mathbb{P}[X = x] - \mathbb{P}[Y = x]|$$

$$= \frac{1}{2} \sum_{x=0}^{\infty} |\mathbb{P}[X \neq Y, X = x] - \mathbb{P}[X \neq Y, Y = x]|$$

$$\leq \frac{1}{2} \sum_{x=0}^{\infty} (\mathbb{P}[X \neq Y, X = x] + \mathbb{P}[X \neq Y, Y = x])$$

$$\leq \frac{1}{2} \sum_{x=0}^{\infty} \mathbb{P}[X \neq Y, X = x] + \frac{1}{2} \sum_{x=0}^{\infty} \mathbb{P}[X \neq Y, Y = x]$$

$$= \mathbb{P}[X \neq Y]$$

Maximal coupling

Theorem 8 For pmfs μ and ν on \mathbb{N} , we have

$$d_{TV}(\boldsymbol{\mu}; \boldsymbol{\nu}) = \inf \left(\mathbb{P} \left[X \neq Y \right] : \left(X, Y \right) \in \mathcal{C}(\boldsymbol{\mu}, \boldsymbol{\nu}) \right)$$

where $C(\mu, \nu)$ denotes the collection of all couplings for the pair μ and ν .

Corollary 2 For pmfs μ and ν on \mathbb{N} , there exists a coupling (X^*, Y^*) in $\mathcal{C}(\mu, \nu)$ such that

$$d_{TV}(\boldsymbol{\mu}; \boldsymbol{\nu}) = \mathbb{P}\left[X^{\star} \neq Y^{\star}\right]$$

Such a coupling is called a **maximal** coupling for the pair μ and ν .

An easy example

• Pick 0 . It is easy to verify that

$$d_{TV}(B(p), B(p')) = |p - p'|$$

- The independent coupling is **not** maximal
- The maximal coupling is achieved by taking

$$B^{\star}(p) = \mathbf{1} [U \leq p]$$
 and $B^{\star}(p') = \mathbf{1} [U \leq p']$

with U uniform on (0,1). Indeed,

$$\mathbb{P}[\mathbf{1}[U \le p] \ne \mathbf{1}[U \le p']] = \mathbb{P}[p < U \le p'] = |p - p'|$$

A useful fact via coupling

Proposition 1 For arbitrary pmfs $\mu_1, \ldots, \mu_n, \nu_1, \ldots, \nu_n$ on \mathbb{N} , it holds

$$d_{TV}(\boldsymbol{\mu}_1 \star \ldots \star \boldsymbol{\mu}_n; \boldsymbol{\nu}_1 \star \ldots \star \boldsymbol{\nu}_n) \leq \sum_{i=1}^n d_{TV}(\boldsymbol{\mu}_i; \boldsymbol{\nu}_i)$$

Proposition 2 Consider mutually independent \mathbb{N} -valued rvs X_1, \ldots, X_n defined on a common probability space with $X_i \sim \mu_i$ for all $i = 1, \ldots, n$. Similarly, consider mutually independent \mathbb{N} -valued rvs Y_1, \ldots, Y_n defined on a common (possibly different) probability space with $Y_i \sim \nu_i$ for all $i = 1, \ldots, n$. Then, it holds

$$d_{TV}(X_1 + \ldots + X_n; Y_1 + \ldots + Y_n) \le \sum_{i=1}^n d_{TV}(X_i; Y_i)$$

A proof of Proposition 1

- For each i = 1, ..., n, consider any coupling (X_i, Y_i) in $C(\mu_i, \nu_i)$ such that the \mathbb{N}^2 -valued rvs $(X_1, Y_1), ..., (X_n, Y_n)$ are mutually independent pairs defined on a common probability space.
- By construction,

$$X_1 + \ldots + X_n \sim \boldsymbol{\mu}_1 \star \ldots \star \boldsymbol{\mu}_n$$

and

$$Y_1 + \ldots + Y_n \sim \nu_1 \star \ldots \star \nu_n$$

• By the coupling inequality,

$$d_{TV}(\boldsymbol{\mu}_{1} \star \ldots \star \boldsymbol{\mu}_{n}; \boldsymbol{\nu}_{1} \star \ldots \star \boldsymbol{\nu}_{n})$$

$$= d_{TV}(X_{1} + \ldots + X_{n}; Y_{1} + \ldots + Y_{n})$$

$$\leq \mathbb{P}[X_{1} + \ldots + X_{n} \neq Y_{1} + \ldots + Y_{n}]$$

$$\leq \mathbb{P}[\bigcup_{i=1}^{n} [X_{i} \neq Y_{i}]]$$

$$\leq \sum_{i=1}^{n} \mathbb{P}[X_{i} \neq Y_{i}]$$

• Now use the maximal coupling for each i = 1, ..., n so that

$$d_{TV}(\boldsymbol{\mu}_i; \boldsymbol{\nu}_i) = \mathbb{P}\left[X_i^{\star} \neq Y_i^{\star}\right]$$

so that

$$d_{TV}(\boldsymbol{\mu}_1 \star \ldots \star \boldsymbol{\mu}_n; \boldsymbol{\nu}_1 \star \ldots \star \boldsymbol{\nu}_n) \leq \sum_{i=1}^n d_{TV}(\boldsymbol{\mu}_i; \boldsymbol{\nu}_i)$$

An easy Poisson approximation result

• Consider a collection $\{B_k(p_k), k = 1, 2, ..., n\}$ of **mutually** independent $\{0, 1\}$ -valued (Bernoulli) rvs with

$$\mathbb{P}[B_k(p_k) = 1] = 1 - \mathbb{P}[B_k(p_k) = 0] = p_k, \quad k = 1, \dots, n$$

and define

$$S_n := B_1(p_1) + \ldots + B_n(p_n).$$

• Also write

$$\lambda_n = p_1 + \ldots + p_n.$$

Question – How well is S_n approximated by a Poisson rv, say with parameter λ_n ? In particular, what can we say about

$$d_{TV}(S_n;\Pi(\lambda_n))$$
?

Answer – With mutually independent Poisson rvs $\Pi(p_1), \ldots, \Pi(p_n)$, we get

$$d_{TV}(S_n; \Pi(\lambda_n))$$
= $d_{TV}(B_1(p_1) + \ldots + B_n(p_n); \Pi(p_1) + \ldots + \Pi(p_n))$
 $\leq \sum_{i=1}^{n} d_{TV}(B_i(p_i); \Pi(p_i)).$

Computing $d_{TV}(B(p); \Pi(p))$ (0 < p < 1)

• The maximal coupling $(B^*(p), \Pi^*(p))$ is given by

$$\mathbb{P}\left[B^{*}(p) = x, \Pi^{*}(p) = y\right]$$

$$= \begin{cases} 1-p & \text{if } x = y = 0\\ \frac{p^{y}}{y!}e^{-p} & \text{if } x = 1, y = 1, 2, \dots \end{cases}$$

$$e^{-p} - (1-p) & \text{if } x = 1, y = 0$$

• It is easy to see that

$$\mathbb{P}[B^{*}(p) \neq \Pi^{*}(p)] = (e^{-p} - (1-p)) + \sum_{y=2}^{\infty} \frac{p^{y}}{y!} e^{-p}$$

$$= (e^{-p} - (1-p)) + (1 - e^{-p} - pe^{-p})$$

$$= (1 - e^{-p}) p$$

Thus,

$$d_{TV}(B(p); \Pi(p)) \le (1 - e^{-p}) p \le p^2$$

for all 0 .

A Poisson approximation is born!

Thus,

$$d_{TV}(S_n; \Pi(\lambda_n)) \leq \sum_{i=1}^n d_{TV}(B_i(p_i); \Pi(p_i))$$

$$\leq \sum_{i=1}^n p_i^2$$

With
$$\boldsymbol{\mu} = \Pi(\boldsymbol{\mu})$$
 and $\boldsymbol{\lambda} = \Pi(\boldsymbol{\lambda})$,

$$d_{TV}(\Pi(\mu);\Pi(\lambda)) \le |\mu - \lambda|$$

Order statistics

• Let $X_{n,1}, \ldots, X_{n,n}$ denote the locations of the n nodes arranged in **increasing** order, i.e.,

$$X_{n,1} \le \ldots \le X_{n,n}$$

with the convention $X_{n,0} = 0$ and $X_{n,n+1} = 1$.

• Also define

$$L_{n,k} := X_{n,k} - X_{n,k-1}, \quad k = 1, \dots, n+1.$$

• For all $\tau \in (0,1)$,

$$P(n;\tau) = \mathbb{P}\left[L_{n,k} \le \tau, \ k = 2, \dots, n\right]$$

A useful fact

• For any subset $I \subseteq \{1, \ldots, n\}$,

$$\mathbb{P}[L_{n,k} > t_k, \ k \in I] = \left(1 - \sum_{k \in I} t_k\right)_+^n, \quad t_k \in [0,1], \ k \in I$$

with the notation

$$x_{+}^{n} = \begin{cases} x^{n} & \text{if } x \ge 0 \\ 0 & \text{if } x \le 0. \end{cases}$$

Leads to closed form expression for $P(n;\tau)$

Breakpoint nodes

- For each i = 1, ..., n, node i is said to be a **breakpoint** node in $\mathbb{G}(n; \tau)$ whenever
 - it is not the leftmost node in [0,1] and
 - there is no node in the random interval $[X_i \tau, X_i]$.
- The number $C_n(\tau)$ of breakpoint nodes in $\mathbb{G}(n;\tau)$ is given by

$$C_n(\tau) = \sum_{k=2}^{n} \chi_{n,k}(\tau)$$

with indicators

$$\chi_{n,k}(\tau) := \mathbf{1} [L_{n,k} > \tau], \quad k = 1, \dots, n+1.$$

• For all $\tau \in (0,1)$,

$$P(n;\tau) = \mathbb{P}[L_{n,k} \le \tau, k = 2, ..., n]$$

= $\mathbb{P}[C_n(\tau) = 0].$

For all $\tau \in (0,1)$,

$$C_n(\tau) + 1 = \text{Number of connected components}$$

in $\mathbb{G}(n;\tau)$

For future reference

• For all $\tau \in (0,1)$ and all $n = 1, 2, \ldots$,

$$\mathbb{E}\left[C_n(\tau)\right] = (n-1)\left(1-\tau\right)^n$$

and

$$\mathbb{E}\left[C_n(\tau)^2\right] = \mathbb{E}\left[C_n(\tau)\right] + (n-1)(n-2)\left(1-2\tau\right)_+^n$$
$$= (n-1)\left(1-\tau\right)^n + (n-1)(n-2)\left(1-2\tau\right)_+^n$$

Poisson convergence

Theorem 9 For each x in \mathbb{R} ,

$$C_n(\sigma_n(x)) \Longrightarrow_n \Pi(e^{-x})$$

where $\Pi(\mu)$ denotes a Poisson rv with parameter μ , so that

$$\lim_{n \to \infty} P(n; \sigma_n(x)) = e^{-e^{-x}}$$

Godehardt and Jaworski (1996)

Poisson approximation (Han and Makowski 2006) – Finite node population

Poisson approximation

Theorem 10 For each n = 2, 3, ... and τ in the interval (0, 1), it holds that

$$d_{TV}(C_n(\tau); \Pi(\lambda_n(\tau))) \le B_n(\tau)$$

with

$$\lambda_n(\tau) = \mathbb{E}\left[C_n(\tau)\right] = (n-1)\left(1-\tau\right)^n$$

and

$$B_n(\tau) = (n-1)(1-\tau)^n - (n-2)\frac{(1-2\tau)_+^n}{(1-\tau)^n}$$

Theorem 10 implies Theorem 9

The triangular inequality yields

$$d_{TV}(C_n(\tau); \Pi(e^{-x}))$$

$$\leq d_{TV}(C_n(\tau); \Pi(\lambda_n(\tau))) + d_{TV}(\Pi(\lambda_n(\tau)); \Pi(e^{-x}))$$

with

$$\lambda_n(\tau) = \mathbb{E}\left[C_n(\tau)\right] = (n-1)\left(1-\tau\right)^n$$

But we have

$$d_{TV}(\Pi(\lambda_n(\tau)); \Pi(e^{-x})) \le |\lambda_n(\tau) - e^{-x}|$$

and

$$d_{TV}(C_n(\tau); \Pi(\lambda_n(\tau))) \le B_n(\tau)$$

Substitute

$$\tau \leftarrow \sigma_n(x)$$

and check that

$$B_n(\tau) \to_n 0$$

and

$$\lambda_n(\tau) - e^{-x} \to_n 0$$

Corollary 3 For each n = 2, 3, ... and τ in the interval (0, 1), it holds that

$$d_{TV}(C_n(\tau); \Pi(e^{-x})) \le B_n(\tau) + |\lambda_n(\tau) - e^{-x}|$$

Finite node approximations

• For each x in \mathbb{R} , Corollary 3 yields

$$|\mathbb{P}[C_n(\tau) = 0] - e^{-e^{-x}}| \le 2B_n(\tau) + 2|\lambda_n(\tau) - e^{-x}|$$

for each $n = 2, 3, \ldots$ and τ in the interval (0, 1)

• Pick a in the interval (0,1) and select x_a as the unique solution to g(x) = a, namely

$$x_a = -\log\left(-\log a\right)$$

• Obviously,

$$e^{-x_a} = -\log a$$

• Hence,

$$|\mathbb{P}\left[C_n(\tau) = 0\right] - a| \le 2B_n(\tau) + 2|\lambda_n(\tau) + \log a|$$

for each $n = 2, 3, \ldots$ and τ in the interval (0, 1)

Given $\varepsilon \in (0,1)$ and the number n of nodes, select $\tau \in (0,1)$ so that

$$2B_n(\tau) + 2|\lambda_n(\tau) + \log a| \le \varepsilon$$

Given $\varepsilon \in (0,1)$ and $\tau \in (0,1)$, select the number n of nodes so that

$$2B_n(\tau) + 2|\lambda_n(\tau) + \log a| \le \varepsilon$$

A proof of Theorem 10 via the Chen-Stein method

The rvs $\chi_{n,1}(\tau), \ldots, \chi_{n,n+1}(\tau)$ are **negatively related** as seen from the **coupling**

$$[(\chi_{n,1}(\tau), \dots, \chi_{n,n+1}(\tau))_{-i} | \chi_{n,i}(\tau) = 1]$$

$$= st \left(\chi_{n,1} \left(\frac{\tau}{1-\tau} \right), \dots, \chi_{n,n+1} \left(\frac{\tau}{1-\tau} \right) \right)_{-i}$$

for all $i = 1, \ldots, n+1$ with

$$\chi_{n,k}\left(\frac{\tau}{1-\tau}\right) \le \chi_{n,k}(\tau), \quad k = 1,\dots, n+1$$

Basic Chen-Stein inequality becomes

$$d_{TV}(C_n(\tau); \Pi(\lambda_n(\tau))) \leq \frac{1 - e^{-\lambda_n(\tau)}}{\lambda_n(\tau)} \left(\lambda_n(\tau) - \operatorname{Var}[C_n(\tau)]\right)$$

$$\leq \frac{\lambda_n(\tau) - \operatorname{Var}[C_n(\tau)]}{\lambda_n(\tau)}$$

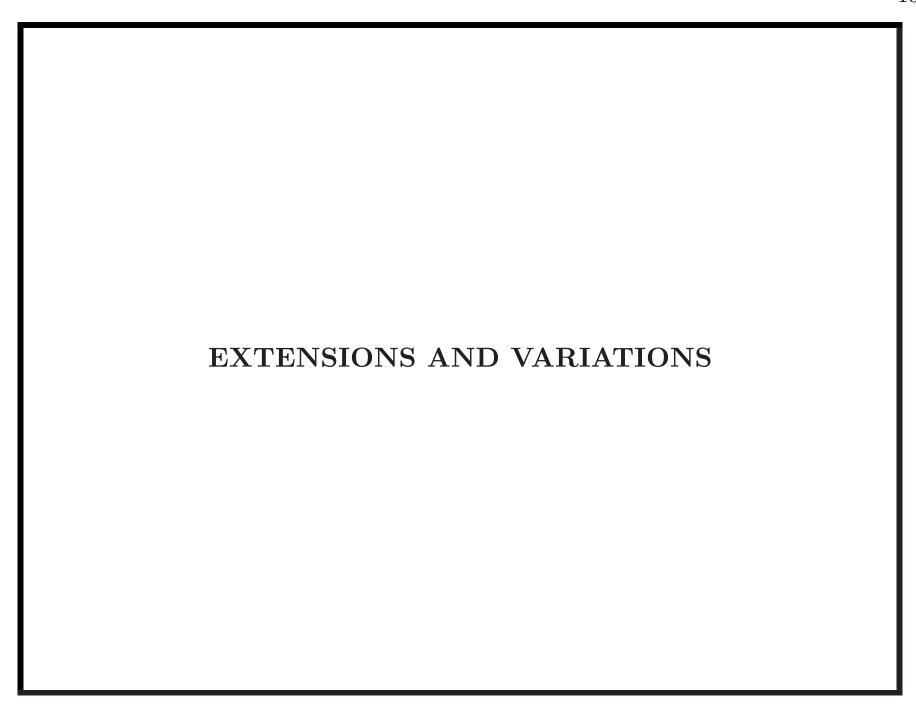
where

$$\lambda_n(\tau) = \mathbb{E}\left[C_n(\tau)\right] = (n-1)\left(1-\tau\right)^n n$$

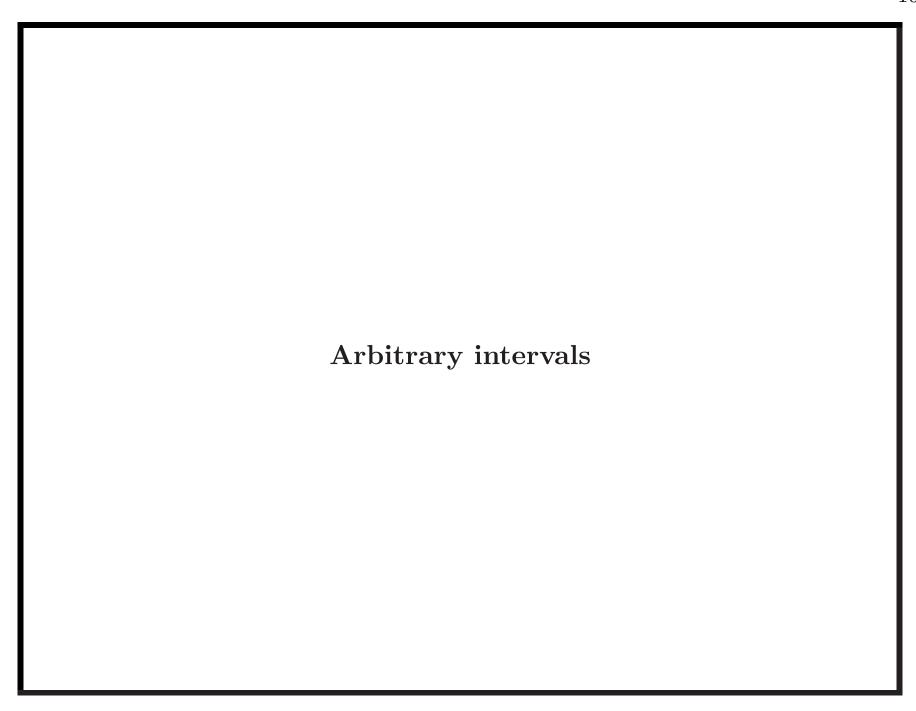
and

$$\frac{\lambda_n(\tau) - \operatorname{Var}[C_n(\tau)]}{\lambda_n(\tau)} = B_n(\tau)$$

by direct inspection!



- Arbitrary intervals
- Intermittently active nodes
- Non-uniform node placement
- Higher dimensions



The GRG $\mathbb{G}(n;\tau,d)$

- A population of n nodes located at X_1, \ldots, X_n in [0, d] with d > 0
- Nodes i and j are connected if $|X_i X_j| \le \tau$
- Assume X_1, \ldots, X_n i.i.d. and uniformly distributed on [0, d]

For each $n = 2, 3, \ldots$, write

$$P(n; \tau, d) = \mathbb{P}\left[\mathbb{G}(n; \tau, d) \text{ connected}\right]$$

for all $\tau > 0$ and d > 0.

Obviously,

$$P(n;\tau,d) = P(n;\frac{\tau}{d})$$

since

$$(X_1,\ldots,X_n)=_{st}d(U_1,\ldots,U_n)$$

where the rvs U_1, \ldots, U_n are **i.i.d.** and **uniformly** distributed on [0,1]

Here, no loss of generality in taking scaling functions

$$\tau: \mathbb{N}_0 \to \mathbb{R}_+: n \to \tau_n \quad \text{and} \quad d: \mathbb{N}_0 \to \mathbb{R}_+: n \to d_n$$

in the form

$$\frac{\tau_n}{d_n} = \frac{\log n + \alpha_n}{n}, \quad n = 1, 2, \dots$$
 (3)

for some $\alpha: \mathbb{N}_0 \to \mathbb{R}$

Zero-one law for graph connectivity

Theorem 11 For scaling functions $\tau, d : \mathbb{N}_0 \to \mathbb{R}_+$ written in the form (3), we have

$$\lim_{n \to \infty} P(n; \tau_n, d_n) = \begin{cases} 0 & \text{iff } \lim_{n \to \infty} \alpha_n = -\infty \\ 1 & \text{iff } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases}$$

The critical scaling $\tau^* : \mathbb{N}_0 \to \mathbb{R}_+$ is given by

$$\tau_n^* = d_n \frac{\log n}{n}, \quad n = 1, 2, \dots$$

Intermittently active nodes	

The GRG $\mathbb{G}(n;\tau,p)$

- A population of n nodes located at X_1, \ldots, X_n in [0, 1]
- Nodes i and j are connected if $|X_i X_j| \le \tau$
- Assume X_1, \ldots, X_n i.i.d. and uniformly distributed on [0, 1]
- For each $p \in [0, 1]$, let $B_1(p), \ldots, B_n(p)$ denote a collection of **i.i.d.** $\{0, 1\}$ -valued with the interpretation that for each $i = 1, \ldots, n$,

Node i active (resp. inactive) if $B_i(p) = 1$ (resp. $B_i(p) = 0$)

• Mutual independence of the rvs $\{X_1, \ldots, X_n\}$ and $\{B_1(p), \ldots, B_n(p)\}$

Non-uniform node placement	

The GRG $\mathbb{G}_f(n;\tau)$

- A population of n nodes located at X_1, \ldots, X_n in [0, 1]
- Nodes i and j are connected if $|X_i X_j| \le \tau$
- Assume X_1, \ldots, X_n i.i.d. and distributed on [0, 1] according to some probability distribution function F on [0, 1] with probability density function (pdf) f

For each $n = 2, 3, \ldots$, write

$$P_f(n;\tau) = \mathbb{P}\left[\mathbb{G}_f(n;\tau) \text{ connected}\right]$$

for all $\tau > 0$.

Assumptions

- The pdf $f:[0,1] \to \mathbb{R}_+$ is **continuous**
- The pdf $f:[0,1] \to \mathbb{R}_+$ has an **isolated minimum** at $x=\xi$ in (0,1) with

$$c = \min_{x \in [0,1]} f(x) = f(\xi) > 0$$

• There exists an integer k = 1, 2, ... such that the pdf $f: [0, 1] \to \mathbb{R}_+$ admits 2k + 1 derivatives on (0, 1) with

$$f^{(\ell)}(\xi) = 0, \ \ell = 1, \dots, 2k \text{ and } f^{(2k+1)}(\xi) > 0$$

Range functions

No loss of generality in writing a range function

$$\tau: \mathbb{N}_0 \to \mathbb{R}_+: n \to \tau_n$$

in the form

$$\tau_n = \frac{\log n - \frac{1}{2k} \log \log n + \alpha_n}{cn}, \quad n = 1, 2, \dots$$
 (4)

for some $\alpha: \mathbb{N}_0 \to \mathbb{R}$

Zero-one law for graph connectivity

Theorem 12 For any range function $\tau : \mathbb{N}_0 \to \mathbb{R}_+$ written in the form (4), we have

$$\lim_{n \to \infty} P_f(n; \tau_n) = \begin{cases} 0 & \text{if } \lim_{n \to \infty} \alpha_n = -\infty \\ 1 & \text{if } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases}$$

The **critical** scaling $\tau^{\star\star}: \mathbb{N}_0 \to \mathbb{R}_+$ is given by

$$\tau_n^{\star\star} = \frac{\log n - \frac{1}{2k} \log \log n}{cn}, \quad n = 1, 2, \dots$$

Open questions

For each x in \mathbb{R} , consider the range function $\sigma(x) : \mathbb{N}_0 \to \mathbb{R}_+$ given by

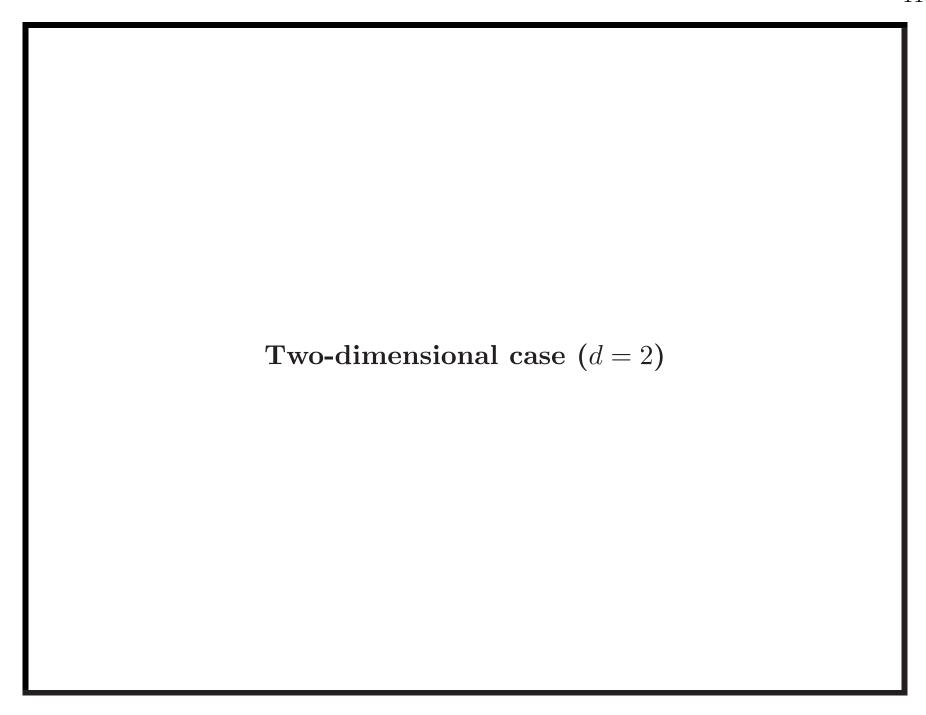
$$\sigma_n(x) = \frac{\log n - \frac{1}{2k} \log \log n + x}{cn} = \tau_n^{\star \star} + \frac{x}{cn}$$

for n large enough. What is the limit

$$C_n(\sigma_n(x)) \Longrightarrow_n ?$$

What are the exact asymptotics of the transition width

$$\delta_n(a), \quad a \in (0, \frac{1}{2})$$



The GRG $\mathbb{G}_2(n;\tau)$

- A population of n nodes located at X_1, \ldots, X_n in a compact convex subset $\Omega \subset \mathbb{R}^2$
- Nodes i and j are connected if $||X_i X_j|| \le \tau$
- Assume X_1, \ldots, X_n i.i.d. and uniformly distributed on Ω

For each $n = 2, 3, \ldots$, write

$$P_2(n;\tau) = \mathbb{P}\left[\mathbb{G}_2(n;\tau) \text{ connected}\right]$$

for all $\tau > 0$.

Critical scaling

Critical scaling (for the disk model) is the range function $\tau^* : \mathbb{N}_0 \to \mathbb{R}_+$ given by

$$\pi \left(\tau_n^{\star}\right)^2 = \frac{\log n}{n}, \quad n = 1, 2, \dots$$

Gupta and Kumar (1998), Kunniyur and Venkatesh (2006)

Perturbation $\sigma(x) : \mathbb{N}_0 \to \mathbb{R}_+$ given by

$$\sigma_n(x) = \sqrt{\left(\frac{\log n + x}{\pi n}\right)_+}, \quad n = 1, 2, \dots$$

Poisson convergence

Poisson convergence for the number of isolated nodes, namely

$$I_n(\sigma_n(x)) \Longrightarrow_n \Pi(e^{-x})$$

so that

$$\lim_{n \to \infty} P_2(n; \sigma_n(x)) = e^{-e^{-x}}$$

by asymptotic equivalence of connectivity and absence of isolated nodes.

Poisson approximation not known

Transition width

Poisson convergence implies

$$\delta_n(a) = \frac{C(a)}{2} \sqrt{\frac{1}{\pi n \log n}} (1 + o(1)),$$

as compared to the result by Goel et al., namely

$$\delta_{A,n}(a) = O\left(\frac{(\log n)^{\frac{3}{4}}}{\sqrt{n}}\right)$$

Conclusions/Extensions

- Poisson convergence is ubiquitous in random graphs (e.g., Erdős-Renyi graphs)
 - Other properties (e.g., existence of isolated nodes)
 - Higher dimensions (e.g., d = 2 by Kunniyur and Venkatesh (2006))
- Poisson convergence ≡ phase transition? Chen-Stein method shows that

$$P(n;\tau) = \mathbb{P}\left[C_n(\tau) = 0\right] \simeq e^{-(n-1)\lambda}$$

- Small change in τ yields a moderate change in λ , which in turn leads to a significant variation in the probability of graph connectivity