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RANDOM GRAPHS



Graph G = (V, F)

e A graph G = (V, F) with set V of nodes and edge set
ECV XV

— Undirected
(w,y) e £ iff (y,z) € E

— No self-loop
(z,2) ¢ &

e Convention




An algebraic view A = (V, E)

e Adjacency matrix of G = (V, E) is the n x n matrix
A = (agy)

/

1 if (x,y) € E

axy:<

0 if (z,y)¢FE

\

— Undirected — Symmetric matrix
Apy = Qyzs, T, y=1,...,n

— No self-loop — Zero diagonal elements




Counting edges and graphs

e There are at most

(Z) B n(n2— 1)

possible edges, i.e., for any G = (V,,, E),
G
2

e If G(V,,) denotes the collection of all graphs on V,,, then

G| = 2(3) = 9"




Graph properties

e A graph property A for graphs on V,, is simply a subset A of
G(Vn), ie.,
ACG(Vn)

e Example 1 — Graph connectivity
Acon :={(Vp,, E) € G(V,,) : (V,,, E) connected}
e Example 2 — Absence of isolated nodes

ANO isolated node
= {(Vp,E) € G(V,): (Vp, E) contains no isolated node}




Monotone graph properties

e A graph property A for graphs on V,, is said to be monotone
increasing if the corresponding subset A C G(V,,) has the
following monotonicity property: For (V,,, ) and (V,,, E’) in
G(Vy,), the conditions

ECE' and (V,,E)e A

imply
(Vo, E) e A

e Graph connectivity and absence of isolated nodes are monotone

increasing properties




Random graphs

e The finite set G(V,,) has a natural measurable structure, namely
(G(Va), P(G(Vn)))

e A random graph over the vertex set V,, is a probability

measure P, defined on this measurable space

(G(V,),P(G(Vy,))) with pmf

{Pn(G), G = (Vi, E) € G(Va) )

e Many different ways to generate the pmf P,

— Structure!




e A more concrete definition: A random graph over the vertex
set V,, is a G(V},)-valued rv G defined on some probability
triple (2, F,P), i.e

G:Q—G(Vy,)
with
P,(G)=PG=G], G=(V,,E)eG(Vy,).

e For any graph property A on V,,,

P,(A)=P[Ge A=) P[G=(]
GeA




Examples (Non-geometric)

e Erdos-Renyi graphs
~ Glmm) (1<m < (}))
— Gn;p) (0<p<1)

e Random intersection graphs

— K(n; K,p) (K=1,2,...and 0 <p <1)
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Geometry!

e A population of n nodes located at X1,...,X,, in a compact

convex region ) C R?

— Unit cube [0, 1]%, unit ball

e Assume X1,...,X,, i.i.d. distributed according to some

non-atomic probability measure p on £

— The pm p admits a density f : {2 — R, so that

u(B) = /B f(z)de, BeBSQ)

o Metric § : RY — R,
— £y (1 <p<o0)
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Examples (Geometric)

Waxman graphs

— W(n;a) (a > 0)

Random K -nearest neighbor graphs
— N(n; K) (K=1,2,...)

Random Yao graphs

— Y(n;0) (0 <8 < 2m)

Metric random graphs (a.k.a. geometric random graphs)

— G(n;71) (1 >0)
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The search for typicality

e Consider a family of random graphs
{G(n;0), 0 € ©; n=2,3,...}
and for some graph property A, define
Ps(n;0) =P [G(n;0) € A
e Find a scaling function 6 : Ny — © : n — 6,, such that either

lim Pa(n;6,) =1

n—aoo

lim Pa(n;6,) =0

n—aoo
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e Often, there exists a separation of scales via a critical scaling

function

0 :Ng —©:n—0,

in the form of a zero-one law

(0 if 6, much smaller than 0

lim Pa(n;6,) = <

n—oo

1 if 6, much larger than 67

\

e Basic questions
— Identify 6* for property A of interest

— Give precise meaning to statements “6,, much smaller than

0>” and “6, much larger than 67”




GRG Gy(n;7) on Q C R

A population of n nodes located at X,...,X,, in compact

convex region ) C R?
Nodes i and j are connected if | X; — X || <7

Assume Xq,...,X,, 1.i.d. and uniformly distributed on (2

Applications to statistical physics, cluster analysis, hypothesis

testing and wireless networks

Appel and Russo, Penrose, Gupta and Kumar, etc.
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Not yet connected

N=1000 T:O.95TO
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Just connected

N=1000
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Transitions! Transitions!

Network Connected Probability

Two-dimensional Network N=1000

0.04 0.06 0.08 0.10
Communication Range
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Phase transitions

Network Connected Probability

Two-dimensional Network n=1000

™ Tl

0.04 0.06 0.08 0.10
Communication Range
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CONNECTIVITY

IN THE ONE-DIMENSIONAL MODEL

20



GRG G(n;7) on |0, 1]

e A population of n nodes located at X1,..., X, in [0, 1]
e Nodes i and j are connected if | X; — X;| <7

e Assume Xi,...,X, i.i.d. and uniformly distributed on [0, 1]

e E.g., Highway networks

21



Graph connectivity

e For each n = 2,3, ..., write

P(n;7) :=P|G(n;7) is connected|, 7 >0

e Kendall and Moran (1963), Godehardt and Jaworski (1996),
Desai and Manjunath (2002)
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Order statistics

o Let X, 1,...,X, , denote the locations of the n nodes

arranged in increasing order, i.e.,
Xn,l <...< Xn,n

with the convention X,, o =0 and X,, ,4+1 = 1.

e Also define

Ln,k = Xn,k:_Xn,k:—la k=1,...,n+1.

e For all 7 € (0,1),

23



A useful fact

e For any subset I C {1,...,n},

P[Lyg >ty k€l = (1-2@6) . tpe[0,1], kel
+

kel

with the notation

( .
" if >0

0 it  <0.

\

Leads to closed form expression for P(n;7) by the mutual
inclusion-exclusion principle
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ZERO-ONE LAWS
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e Does there exists a separation of scales via a critical scaling

function

77 :Ng—R_:n—m,

in the form of a zero-one law

(0 if 7, much smaller than T

lim P(n;1,) = <

n—oo

| 1 if 7, much larger than 7




Range functions

No loss of generality in writing a range function
T:Ng—=Ry:n—7,

in the form ,

Tn=—(logn+a,), n=12....

n

for some deviation function

a:Nog—R:n— a,
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Zero-one law for graph connectivity

Theorem 1 For any range function 7 : Ng — R written in the

form (1), we have

¢ oo
0 if lim, .o o, = —00

lim P(n;1,) = <

n—0o0

L1 if limy, oo iy = +00.

Critical scaling

~ logn

9
n n

*

T, n=12...

acts as boundary in the space of scalings.




Several proofs

e Several representations for P(n;7)

e Method of first and second moments applied to the number of

breakpoint users

e An interpolation result
— Results by P. Lévy (1939) for maximal spacings

— Poisson convergence for the the number of breakpoint users
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A proof of Theorem 1

by counting

the number of breakpoint nodes
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Breakpoint nodes

e Foreach 7 =1,...,n, node ¢ is said to be a breakpoint node

in G(n;7) whenever
— it is not the leftmost node in [0, 1] and

— there is no node in the random interval [ X; — 7, X;].

e The number C,,(7) of breakpoint nodes in G(n;7) is given by

Cu(T) = D Xni(7)
k=2

with indicators

Xnk(T)i=1[Lyp>7], k=1,...,n+1.
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e For all 7 € (0,1),

P(n;7)

For all 7 € (0,1),

Number of connected components

in G(n; )
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For future reference

e Forall 7€ (0,1) and alln=1,2,...,

E[Cn(m)]=(n-1)(1-7)"

E[C,(T)]+ (n—1)(n—2)(1 - 27)7}r
(n—-1)(1-7)"+Mn-1)(n—-2)(1-27)"
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e Observe that

C,(7)?

ke 0=2 kAl
e Forall k,/=1,...,n, with k # ¢,
E[Xnw(T)] =P[Lygp>71]=(1-7)"
and

E [Xn,k(T)Xn,ﬁ( )] =P [Ln,k > T, Ln,@ > 7-] — (1 - 27—)3—




Basic inequalities (I)

For any N-valued rv X with E [X] < co, we have

| ~E[X]<P[X =0

A proof

Note that
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Basic inequalities (IT)

For any N-valued rv X with 0 < E [X 2} < 00, we have

A proof

By Cauchy-Schwartz,

E[X] E[1[X # 0] X]°
E|1[X # 07| E[X?]

so that
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A first proof of Theorem 1

Method of first moment:
1 —-E|[Ch(T)] < P(n;T)

for each n =2,3,... and 7 in [0, 1].

Method of second moment:

for each n =2,3,... and 7 in [0, 1].
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The zero-one law follows if for any range function 7 : Ny — R of
the form (1), we show that

lim E|Cy(m,)] =0 if lim «a, =00

n—aoo n—aoo

E [Cn (Tn)2]

=1 if lim a, = —oo.

lim

"= E [Ca(r)] o

Easily done once we note that
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A proof of Theorem 1

by limiting results

on maximal spacings

39



Maximal spacing

e The maximal spacing associated with Xq,...

M, :=max (L, r, k=2,...,n)

e For all 7 € (0,1),

P(n;7)

, X, 1s given by

40



Variations on a theme by Lévy (1939)

Theorem 2 It holds that
M,

*
T?’L

P
— 1

nM, —logn —, Gumbel A

The R-valued rv X is Gumbel (A) if

— X

PX<zl=e°, z€R

41



Relevance?

For each z in R, consider the range function o(x) : Ny — R, given

]
On(x):<ogn+az> , n=12,...
+

by

n

loen + x
— g :Tn—l—

on <x) n n

for n large enough.

42



For n large enough,

P(n;on(z))

by Theorem 2.

P[M, < on(z)]
logn + x|

PiM, <
n

P [nM, —logn < z]
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Interpolating the zero-one law

Theorem 3 For each x in R, we have

lim P(n;opn(z)) =€ ¢

e Godehardt and Jaworski (1996)
e Subsumes the zero-one law (Theorem 1)

e A natural question: Where is Theorem 3 coming from?
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Theorem 3 implies Theorem 1

e Pick x in R. With lim,, .- o, = oo, we have x < «,, for

n > n(x), whence

on(x) <70, n>n(x)

e Thus, by monotonicity,
P(n;on(z)) < P(n;m,), n>n(z)
e Letting n go to infinity, we have

lim P(n;o,(x)) <liminf P(n;7,)

n—aoo n—aoo

and the one-law follows since

1 = lim g(z) < liminf P(n;7,)

r— 00 n—oo
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e Pick x in R. With lim,, - o, = —o0, we have «,, < x for

n > n(x), whence

e Thus, by monotonicity,
P(n;m,) < P(n;on(z)), n2>n(x)

e Letting n go to infinity, we have

limsup P(n;7,) < g(x) = lim P(n;o,(x))

and the zero-law follows since

limsup P(n;7,) < lim g(x) =0

n— 00 L—00




Strengthening Theorem 1

Theorem 4 For any range function 7 : Ng — R written in the

form (1), we have

4 P
0 iff lim,, o o, = —00

lim P(n;1,) = <

n—0o0

| 1 iff limy, o0 iy = +00.




Preparing the proof of Theorem 2

For each n = 2,3, ..., write

so that

Thus, A,, =, A implies

Ay
—,, 0 whence
logn

48



L 1 implies

Lemma 1 The threshold function 7 is a weak threshold in the
sense that

lim P(n;7m,) =0 if

n—aoo

lim P(n;7,) =1

n—oo

for range function 7 : Ng — R .
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L 1 implies

Lemma 2 The threshold function 7™ is a strong threshold in the

sense that
)

0 ifO0<exl

lim P(n;cr)) = <

1 if 1<e.

\

Best possible result

Zero — one Law = Strong threshold = Weak threshold




A very strong threshold

Theorem 5 For any range function 7 : Ng — R, written in the
form (1), we have

r e 1
0 iff lim,_ o Oy,

lim P(n;7,) = 4

n—aoo

1 limy, e o

1
Tn=—(logn+a,), n=12....
n

Appropriate to call the threshold function 7* a very strong
threshold — Early indicator that the phase transition will be sharp
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A useful representation of the spacings

Consider a sequence {£,&,, n=1,2,...} of i.i.d. R -valued rvs
with & > 0 a.s. and set

Tn:£1—|——|—§n, n:1,2,...

Lemma 3 With £ exponentially distributed with parameter 1, we

have
gl fn—l—l )

e e s
Tn—|—1 Tn—l—l

(Ln,17 I 7Ln,n—|—1> —st (
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A proof of Theorem 2

Fixn=1,2,....

We have

53



Therefore,

nM, —logn =g




But, by SLLNs

while CLT yields

with U =, N(0,1) and 0% = 1.

Therefore,

( n 1) | n
— 1| -logn = :
Tn—i—l 5 Tn—|—1
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Finally, for each = in R,

P& <x+logn, k=2,...n

][ Plé < +logn]
k=2

(1 —(:I:—I—log n))n_l

(i)

()

In short,

max & — logn =, Gumbel A




THE WIDTH OF THE PHASE TRANSITION

AND POISSON CONVERGENCE
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GRG G(n;7) on |0, 1]

e A population of n nodes located at X1,..., X, in [0, 1]
e Nodes i and j are connected if | X; — X;| <7

e Assume Xi,...,X, i.i.d. and uniformly distributed on [0, 1]

For each n = 2,3, ..., we have

P(n;71) :=P|G(n; 1) is connected], 7 >0
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Phase transitions
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One-dimensional Network  N=1000

0.004 0.008 0.012 0.016
Communication Range
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The width of the phase transition

e Forn=23,...and a € (0,1), let 7,(a) denote the unique

solution to

P(n;t)=a, 7€(0,1).

e Also define the transition width

5,(a) = (1 — a) — 7 (a), a€ (0, %).

Question — How does §,(a) vary with n large? Beyond
Goel et al.

60



Main result — Very sharp asymptotics

Theorem 6 For every a in the interval (0, 1),

o (a) = loi” ~og (log (2)) -

%), we have

5n(a) = log ( log a ) = 4o(n)

log(l—a)) n

Corollary 1 For every a in the interval (0,

61



Goel et al. (d=1)

e For every monotone graph property A,

San(a) =0 ( _lzg“> .

e There exists some monotone graph property, say B, such that

55 n(a) = © < _lzg“> |

Theorem 6 gives sharper (and exact) asymptotics in the case of

graph connectivity!
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The big picture (revisited)

e Guessing Theorem 6 from Theorem 3

e Poisson convergence (Theorem 9)
— Poisson approximation by Chen-Stein method
— Theorem 9 implies Theorem 3 which implies Theorem 6

— Information on rate of convergence, hence a handle on

finite node graphs!
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Range functions

No loss of generality in writing a range function
T:Ng—=Ry:n—m1,

in the form

1
Tn=—(logn+a,), n=12,....
n

for some

a:Ng—R:n— a«a,

64
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Zero-one Law for graph connectivity

Theorem 1 For any range function 7 : Ng — R, written in the
form (2), we have

r e 1
0 iff lim,_, o o, = —00

lim P(n;7,) = 4

n—aoo

|1 iff limy, o0 iy = +00.

Critical scaling

_ logn

9
" n

*

T, n=12...

acts as boundary in the space of scalings.




Solving P(n;7) = a?

e Interpolate between 0 and 1 through mild fluctuations
about 7 : Ng — R

e For each x in R, consider the range function o(z) : Ng — R

given by

1
On(x>:<og7;—l—x) , n=1,2,...
_I_

_logn+uw

on(x) -

for n large enough.
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Interpolating the zero-one law

Theorem 3 For each x in R, we have

lim P(n;opn(z)) =€ ¢
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Guessing Theorem 6 from Theorem 3

For each x in R, Theorem 3 yields the approximation
P(n;on(z)) ~ g(z)
for large enough n.

The mapping g : R — R, :  — ¢g(x) is strictly monotone
and continuous with lim, . g(z) =0 and lim, . g(x) = 1.

Thus, for each a € (0, 1), there exists a unique scalar x, such
that g(z,) = a, namely

r, = —log(—loga) .
Given a € (0,1), we find
P(n;on(z4)) >~ a




for large n.

e By definition,

so that

for large n.

e This strongly suggests that asymptotically o,(z,) and 7,(a)

behave in tandem, laying the grounds for the validity of

Tn(a) = on(Ta) + O(n_l)

or equivalently,

1
Tn(a) = e _ log (log (

n a
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Origins of Theorem 37

e Property of maximal spacings (Lévy 1939)

— Makes sense only for d =1

lim P(n;o,(x)) = lim P[M, <o,(z)]

n—aoo n—aoo

e Poisson convergence

— Works (in principle) for all dimensions

lim P(n;o,(x)) = lim P[C,(c,(x)) = 0]

n—aoo n—aoo
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(Classical) Poisson convergence

For each p € |0,1], let {B,(p), n=1,2,...} denote a collection of
i.i.d. {0, 1}-valued (Bernoulli) rvs with

P[B,(p) =1] =1—-P|[B,(p)
and define

Bl(p)—l—
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Theorem 7 Consider a |0, 1|-valued sequence {p,, n=1,2,...}
with

lim np, = A
n—aoo

for some \ > 0. Then, it holds that
Sn(pn) =5 II(N)

where II(\) denotes a Poisson rv with parameter \.

For n large,

A
n

Pn ~~ and Sn(pn> st H(’npn)
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The Poisson paradigm

e Foreachr=1,2,..., let

{Br,k(pr,k)a k=1,..., kr}

denote a collection of {0, 1}-valued rvs, which are not

necessarily independent, and write

ST(pT,17 <. 7p'r,k:r) — Br,1<pr,1> + ...+ Br,kr <p7“,kr>
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e A typical result takes the following form: With

lim, _ k, = 00, if

and
im (pp1+...4+prk,.) =A

T— 00

for some A > 0, then under additional conditions of

vanishingly weak correlations,

Sr(pr,la .- . 7p7“,kr) —r H()‘)

E [Sr(pr,la <. 7p7“,k3r)] —

Sr(Dr1y- s Prk,) ~st II(A)

74



Obvious ideas

Via pmfs:

lim [P [Sr(pr,la R 7p7“,k:r> — 37]

T— 00

Iim E

T—00

|:ZSr<pr,17--'7p7”,kr) — €—>\(1—Z)’ < E R
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Via the method of moments: For each p =0,1,...,

lim E[S,(pr1;---Prk,.)?] = E[II(A)?P]

r—00

Via the method of factorial moments — Brun’s Sieve: For each
p=0,1,...,

p

lim E H (ST<p7“,17 s 7p7“,kr> — 8) = )\p—i—l

r— 00
=0
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Total variation

For pmfs 4 and v on N, with X ~ u and with Y ~ v,

dTV u’a y Z ‘:u

)| =dry(X;Y)

This defines a distance on the space of all pmfs on N!

For N-valued rvs {X, X,,, n=1,2,..

.}, X, =, X if and only if

lim dTV<Xn§ X) =0

n—aoo
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The coupling inequality

Lemma 4 For pmfs u and v on N, we have
dry(p;v) <PX #Y]

for any pair of N-valued rvs X and Y, with X ~ pu and with'Y ~ v,
which are defined on a common probability space (2, F,P).

A pair of N-valued rvs X and Y, with X ~ u and with Y ~ v,
which are defined on the common probability space (€2, F,P) is
called a coupling for the pair of pmfs p and v.
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%Z\p[x¢Y,X:x]—P[X%Y,YZ:UH
=0

%i(P[X;AY,X::E]+P[X%Y7Y:37])

1 — RS
5;)@[)(7&1/,)(::1;]+§;P[X%Y,Y=x]

P[X #£Y]
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Maximal coupling

Theorem 8 For pmfs p and v on N, we have
drv(iiv) = inf (P[X £Y]: (X,Y) € C(, 1))

where C(u,v) denotes the collection of all couplings for the pair p
and v.

Corollary 2 For pmfs u and v on N, there exists a coupling
(X*,Y™) in C(u,v) such that

drv(p;v) =P[X" # V7]

Such a coupling is called a maximal coupling for the pair p and v.




An easy example

e Pick 0 < p < p < 1. It is easy to verify that
drv(B(p), B(p')) = |p —p'

e The independent coupling is not maximal

e The maximal coupling is achieved by taking
B*(p) =1[U <p] and B*(p')=1[U <p/|
with U uniform on (0,1). Indeed,

PAU<pl#1[U <Y =Plp<U<p]=Ip-7
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A useful fact via coupling

Proposition 1 For arbitrary pmfs p{,..., ,,V1,...,Vy on N, it
holds

n
dry (phy * - oo x V1 % ... x Vp) < ZdTV(Hz';Vi)

1=1
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Proposition 2 Consider mutually independent N-valued rvs
X1,...,X, defined on a common probability space with X; ~ pu,
for all v = 1,...,n. Similarly, consider mutually independent
N-valued rvs Y1,...,Y, defined on a common (possibly different)
probability space with Y; ~ v, for allt =1,...,n. Then, it holds

drv (X1 + ...+ XpsYi+ ..+ Y,) <) dpv (X))

1=1
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A proof of Proposition 1

e For each i =1,...,n, consider any coupling (X;,Y;) in C(u;, v;)
such that the N%-valued rvs (X1,Y1),...,(X,,Y,) are mutually

independent pairs defined on a common probability space.

e By construction,

Xi+...+ X, ~py x5 pm,

Y1—|—...—|—YnNI/1*...*I/n
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e By the coupling inequality,

Ay (phy * - oo X V1 % ... % Vp)
dry(X1+4+ ...+ X Y1+ ...+ Y,)
PXi+...+ X, #Y1+...+Y,]
P Ui, [ X # Y]]

ZP[Xi # Y]

e Now use the maximal coupling for each 2 = 1,...,n so that
dry (pi;vi) =P XS # Y]]

so that

Ay (py * oo *x V1 % ... % Vp) < ZdTV(Nz’§Vi)

1=1




An easy Poisson approximation result

e Consider a collection {Bx(px), k =1,2,...,n} of mutually
independent {0, 1}-valued (Bernoulli) rvs with

P[Bk(pr) =1 =1—-P|Bi(pr) =0l =pk, k=1,....n

and define
Sp:=B1(p1)+ ...+ Bn(pn).

e Also write
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Question — How well is .5,, approximated by a Poisson rv, say
with parameter \,,? In particular, what can we say about

dry (Sn; TI(An))?

Answer — With mutually independent Poisson rvs
H(p1)7 SRR H(pn)7 we get

drv (Sn; I(An))
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Computing drv(B(p);1l(p)) (0 <p < 1)

e The maximal coupling (B*(p),I1*(p)) is given by

P|B*(p) = z,1I" (p) = y]

1—0p it z=y=0

LreP if x=1,y=1,2,...

e ?P—(1—-p) if z=1y=0

\




e It is easy to see that

P|B*(p) # 1" (p)]

Thus,

drv(B(p);l(p)) < (1—eP)p < p?
for all 0 < p < 1.
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A Poisson approximation is born!

With g =1I(p) and XA = II(\),

dry (TL(p); THA)) < [ — Al
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Order statistics

o Let X, 1,...,X, , denote the locations of the n nodes

arranged in increasing order, i.e.,
Xn,l <...< Xn,n

with the convention X,, o =0 and X,, ,4+1 = 1.

e Also define

Ln,k = Xn,k:_Xn,k:—la k=1,...,n+1.

e For all 7 € (0,1),
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A useful fact

e For any subset I C {1,...,n},

P[Lyg >ty k€I = <1—Ztk> . tpe[0,1], kel
+

kel

with the notation

% :
z" it x>0

0 if =z <O0.

\

Leads to closed form expression for P(n; )
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Breakpoint nodes

e Foreach 7 =1,...,n, node ¢ is said to be a breakpoint node

in G(n;7) whenever
— it is not the leftmost node in [0, 1] and

— there is no node in the random interval [ X; — 7, X;].

e The number C,,(7) of breakpoint nodes in G(n;7) is given by

Cu(T) = D Xni(7)
k=2

with indicators

Xnk(T)i=1[Lyp>7], k=1,...,n+1.
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e For all 7 € (0,1),

P(n;7)

For all 7 € (0,1),

Number of connected components

in G(n; )
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For future reference

e Forall 7€ (0,1) and alln=1,2,...,

E[Cn(m)]=(n-1)(1-7)"

E[C,(T)]+ (n—1)(n—2)(1 - 27)7}r
(n—-1)(1-7)"+Mn-1)(n—-2)(1-27)"
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Poisson convergence

Theorem 9 For each x in R,
Crn(on(z)) =p (e™")

where 11(p) denotes a Poisson rv with parameter p, so that

lim P(n;on(z)) =e ¢

Godehardt and Jaworski (1996)

Poisson approximation (Han and Makowski 2006) — Finite node

population
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Poisson approximation

Theorem 10 For each n = 2,3, ... and 7 in the interval (0,1), it
holds that

dryv (Cpn(7); IL(An(7))) < Bn(T)
with

and
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Theorem 10 implies Theorem 9

The triangular inequality yields
(Cn(7); 1(e™"))
(Cn(7); I(An(7))) + dry (L(An(7)); I1(e™7))

But we have

dry (I(An(7)); (™)) < [An(T) — €77

dry (Cn(7); IH(An(7))) < Bn(7)

98



Substitute

and check that

and

Corollary 3 For eachn =2,3,... and 7 in the interval (0, 1), it
holds that

dry (Cu(7);TL(e™)) < Bu(r) + [Aulr) — ¢
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Finite node approximations

e For each = in R, Corollary 3 yields

P [Cy (1) =0] — e_e_w\ < 2B, (1) + 2|\ (1) —e™®

for each n = 2,3,... and 7 in the interval (0, 1)

e Pick a in the interval (0,1) and select x, as the unique solution

to g(x) = a, namely
r, = —log (—loga)

e Obviously,

xa__

e e =—loga




e Hence,
P [C,(7) =0] —a| <2B,(71) + 2|An(7) + logal

for each n = 2,3,... and 7 in the interval (0, 1)

Given ¢ € (0,1) and the number n of nodes, select 7 € (0,1) so that

2B, (1) + 2|\ (7) + logal < e

Given € € (0,1) and 7 € (0, 1), select the number n of nodes so that

2B,(7) + 2|\ (1) + logal < e
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A proof of Theorem 10
via the Chen-Stein method

The 1vs Xn.1(7), ..., Xn.n+1(7) are negatively related as seen

from the coupling

[(Xn,l(T)v e 7Xn,n—|-1(7-)) ‘Xn 1

( ( . ) (
st | Xn,1 g+ o9 Xn,n+1
1 —7

forall2=1,...,n+ 1 with
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Basic Chen-Stein inequality becomes

1 — e A7)
An (T)
An (1) — Var|C),(7)]
An (T)

dry (Cn(7); H(An(7))) <

(An(7) — Var|C,(7)])

by direct inspection!
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EXTENSIONS AND VARIATIONS
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Arbitrary intervals

Intermittently active nodes
Non-uniform node placement

Higher dimensions
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Arbitrary intervals
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The GRG G(n;7,d)

e A population of n nodes located at X1,..., X, in [0, d] with
d>0

e Nodes i and j are connected if | X; — X;| <7

e Assume Xi,...,X, i.i.d. and uniformly distributed on [0, d|

For each n = 2,3, ..., write
P(n;7,d) = P|[G(n;7,d) connected]

for all 7 > 0 and d > 0.
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Obviously,
-

P(n;7,d) =P(n;3)

since

(X1, X)) =gt d(UL, ..., Un)

where the rvs Uy, ..., U, are i.i.d. and uniformly distributed on
0, 1]

Here, no loss of generality in taking scaling functions
7T:Ng—-R,:n—7, and d:Ng— R, :n—d,

in the form

o logn+ ay
d, n ’

for some o : Njg — R
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Zero-one law for graph connectivity

Theorem 11 For scaling functions 7,d : Ny — R, written in the

form (3), we have

4 o s
0 iff lim,, o o, = —00

lim P(n;7,,d,) = <

n—aoo

| 1 iff limy, o0 ay = +00.

The critical scaling 7* : Ng — R, is given by

1
Bn =12 ...
T
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Intermittently active nodes
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The GRG G(n;7,p)

A population of n nodes located at Xy,..., X, in [0, 1]
Nodes ¢ and j are connected if | X; — X;| <7
Assume X1,..., X, i.i.d. and uniformly distributed on |0, 1]

For each p € [0,1], let B1(p), ..., B,(p) denote a collection of
i.i.d. {0, 1}-valued with the interpretation that for each

1=1,...,n,
Node 7 active (resp. inactive) if B;(p) =1 (resp. B;(p) = 0)

Mutual independence of the rvs {Xy,..., X, } and
{B1(p),...,Bn(p)}
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Non-uniform node placement
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The GRG G¢(n; 1)

e A population of n nodes located at X1,..., X, in [0, 1]
e Nodes i and j are connected if | X; — X;| <7

e Assume Xi,...,X, i.i.d. and distributed on [0, 1] according to
some probability distribution function F on [0, 1] with
probability density function (pdf) f

For each n = 2,3, ..., write
P¢(n;7) = P|Gf(n;7) connected]

for all 7 > 0.
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Assumptions

e The pdf f:]0,1] — R, is continuous

e The pdf f:]0,1] — R, has an isolated minimum at x = ¢ in
(0,1) with

c= xﬁif,ﬁ] f(x)=f(§) >0

e There exists an integer k = 1,2, ... such that the pdf
f:10,1] — R, admits 2k + 1 derivatives on (0, 1) with

FO@E) =0, £=1,....2k and fE+(g) >0




Range functions

No loss of generality in writing a range function
T:Ng—=Ry:n—m1,

in the form

loen — = loglogn + ay,
Tn = & 2L C’If 5 , n=1,2,...

for some o : Nj — R

115



116

Zero-one law for graph connectivity

Theorem 12 For any range function 7 : Ng — R written in the

form (4), we have

( oo
0 if lim, .o O = —00

lim Pf(n;7,) = <

n—oo

|1 if limy, o iy = +00.

The critical scaling 7* : Ng — R, is given by

~ logn — iloglogn

, n=12...
cn
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Open questions

For each = in R, consider the range function o(z) : Ng — R, given
by
~ logn — i loglogn + x

0n<5’7) on =T, T

for n large enough. What is the limit

Cpnlon(x)) = 7

What are the exact asymptotics of the transition width

5n(a)7
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Two-dimensional case (d = 2)
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The GRG Gy(n;7)

e A population of n nodes located at X4,...,X,, in a compact

convex subset ) C R?
e Nodes i and j are connected if || X; — X,|| <7

e Assume Xq,...,X,, i.i.d. and uniformly distributed on 2

For each n = 2,3, ..., write
Py(n; 1) = P|Go(n; 7) connected]

for all 7 > 0.




Critical scaling

Critical scaling (for the disk model) is the range function

*

7 : Ng — R, given by

1
)2: Ogn, ’n,:1,2,...

n

Gupta and Kumar (1998), Kunniyur and Venkatesh (2006)

Perturbation o(z) : Ny — R, given by

) , n=12...
_|_

logn + x
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Poisson convergence

Poisson convergence for the number of isolated nodes, namely
In(on(z)) =n 1I(e™7)

so that

lim Py(n;on(z)) =e ¢

by asymptotic equivalence of connectivity and absence of isolated

nodes.

Poisson approximation not known
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Transition width

Poisson convergence implies

5n<a>=C(“)\/ L 4oy,

2 mn logn

as compared to the result by Goel et al., namely

0an(a) =0 ((lo\g/%ﬂ)
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Conclusions/Extensions

e Poisson convergence is ubiquitous in random graphs (e.g.,
Erd6s-Renyi graphs)
— Other properties (e.g., existence of isolated nodes)
— Higher dimensions (e.g., d = 2 by Kunniyur and Venkatesh
(2006))

e Poisson convergence = phase transition? — Chen-Stein method
shows that

P(n;7) =P[Cp(1) = 0] = e~ (n~DA

— Small change in 7 yields a moderate change in A, which in
turn leads to a significant variation in the probability of
graph connectivity




