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Graph G = (V,E)

• A graph G = (V, E) with set V of nodes and edge set

E ⊆ V × V

– Undirected

(x, y) ∈ E iff (y, x) ∈ E

– No self-loop

(x, x) 6∈ E

• Convention

V = {1, . . . , n} = Vn
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An algebraic view A ≡ (V,E)

• Adjacency matrix of G = (V, E) is the n× n matrix

A = (axy)

axy =















1 if (x, y) ∈ E

0 if (x, y) 6∈ E

– Undirected – Symmetric matrix

axy = ayx, x, y = 1, . . . , n

– No self-loop – Zero diagonal elements

axx = 0, x = 1, . . . , n
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Counting edges and graphs

• There are at most
(

n

2

)

=
n(n− 1)

2

possible edges, i.e., for any G = (Vn, E),

|E| ≤
(

n

2

)

• If G(Vn) denotes the collection of all graphs on Vn, then

|G(Vn)| = 2(
n

2) = 2
n(n−1)

2
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Graph properties

• A graph property A for graphs on Vn is simply a subset A of

G(Vn), i.e.,

A ⊆ G(Vn)

• Example 1 – Graph connectivity

ACon := {(Vn, E) ∈ G(Vn) : (Vn, E) connected}

• Example 2 – Absence of isolated nodes

ANo isolated node

:= {(Vn, E) ∈ G(Vn) : (Vn, E) contains no isolated node}
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Monotone graph properties

• A graph property A for graphs on Vn is said to be monotone

increasing if the corresponding subset A ⊂ G(Vn) has the

following monotonicity property: For (Vn, E) and (Vn, E′) in

G(Vn), the conditions

E ⊂ E′ and (Vn, E) ∈ A

imply

(Vn, E) ∈ A

• Graph connectivity and absence of isolated nodes are monotone

increasing properties
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Random graphs

• The finite set G(Vn) has a natural measurable structure, namely

(G(Vn),P(G(Vn)))

• A random graph over the vertex set Vn is a probability

measure Pn defined on this measurable space

(G(Vn),P(G(Vn))) with pmf

{Pn(G), G = (Vn, E) ∈ G(Vn)}

• Many different ways to generate the pmf Pn

– Structure!
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• A more concrete definition: A random graph over the vertex

set Vn is a G(Vn)-valued rv G defined on some probability

triple (Ω,F , P), i.e.,

G : Ω→ G(Vn)

with

Pn(G) = P [G = G] , G = (Vn, E) ∈ G(Vn).

• For any graph property A on Vn,

Pn(A) = P [G ∈ A] =
∑

G∈A

P [G = G]
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Examples (Non-geometric)

• Erdős-Renyi graphs

– G(n; m) (1 ≤ m ≤
(

n
2

)

)

– G(n; p) (0 ≤ p ≤ 1)

• Random intersection graphs

– K(n; K, p) (K = 1, 2, . . . and 0 ≤ p ≤ 1)
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Geometry!

• A population of n nodes located at X1, . . . , Xn in a compact

convex region Ω ⊂ R
d

– Unit cube [0, 1]d, unit ball

• Assume X1, . . . , Xn i.i.d. distributed according to some

non-atomic probability measure µ on Ω

– The pm µ admits a density f : Ω→ R+, so that

µ(B) =

∫

B

f(x)dx, B ∈ B(Ω)

• Metric δ : R
d → R+

– ℓp (1 ≤ p ≤ ∞)
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Examples (Geometric)

• Waxman graphs

– W(n; a) (a > 0)

• Random K-nearest neighbor graphs

– N(n; K) (K = 1, 2, . . .)

• Random Yao graphs

– Y(n; θ) (0 < θ < 2π)

• Metric random graphs (a.k.a. geometric random graphs)

– G(n; τ) (τ > 0)
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The search for typicality

• Consider a family of random graphs

{G(n; θ), θ ∈ Θ; n = 2, 3, . . .}

and for some graph property A, define

PA(n; θ) = P [G(n; θ) ∈ A]

• Find a scaling function θ : N0 → Θ : n→ θn such that either

lim
n→∞

PA(n; θn) = 1

or

lim
n→∞

PA(n; θn) = 0
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• Often, there exists a separation of scales via a critical scaling

function

θ⋆ : N0 → Θ : n→ θn

in the form of a zero-one law

lim
n→∞

PA(n; θn) =















0 if θn much smaller than θ⋆
n

1 if θn much larger than θ⋆
n

• Basic questions

– Identify θ⋆ for property A of interest

– Give precise meaning to statements “θn much smaller than

θ⋆
n” and “θn much larger than θ⋆

n”
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GRG Gd(n; τ) on Ω ⊂ R
d

• A population of n nodes located at X1, . . . , Xn in compact

convex region Ω ⊂ Rd

• Nodes i and j are connected if ‖Xi −Xj‖ ≤ τ

• Assume X1, . . . , Xn i.i.d. and uniformly distributed on Ω

• Applications to statistical physics, cluster analysis, hypothesis

testing and wireless networks

• Appel and Russo, Penrose, Gupta and Kumar, etc.
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Not yet connected
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Just connected
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Transitions! Transitions!
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Phase transitions
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CONNECTIVITY

IN THE ONE-DIMENSIONAL MODEL
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GRG G(n; τ) on [0, 1]

• A population of n nodes located at X1, . . . , Xn in [0, 1]

• Nodes i and j are connected if |Xi −Xj | ≤ τ

• Assume X1, . . . , Xn i.i.d. and uniformly distributed on [0, 1]

• E.g., Highway networks
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Graph connectivity

• For each n = 2, 3, . . ., write

P (n; τ) := P [G(n; τ) is connected] , τ ≥ 0

• Kendall and Moran (1963), Godehardt and Jaworski (1996),

Desai and Manjunath (2002)

P (n; τ) =
n−1
∑

k=0

(−1)k

(

n− 1

k

)

((1− kτ)+)
n
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Order statistics

• Let Xn,1, . . . , Xn,n denote the locations of the n nodes

arranged in increasing order, i.e.,

Xn,1 ≤ . . . ≤ Xn,n

with the convention Xn,0 = 0 and Xn,n+1 = 1.

• Also define

Ln,k := Xn,k −Xn,k−1, k = 1, . . . , n + 1.

• For all τ ∈ (0, 1),

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n]
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A useful fact

• For any subset I ⊆ {1, . . . , n},

P [Ln,k > tk, k ∈ I] =

(

1−
∑

k∈I

tk

)n

+

, tk ∈ [0, 1], k ∈ I

with the notation

xn
+ =















xn if x ≥ 0

0 if x ≤ 0.

Leads to closed form expression for P (n; τ) by the mutual

inclusion-exclusion principle
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ZERO-ONE LAWS
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• Does there exists a separation of scales via a critical scaling

function

τ⋆ : N0 → R+ : n→ τn

in the form of a zero-one law

lim
n→∞

P (n; τn) =















0 if τn much smaller than τ⋆
n

1 if τn much larger than τ⋆
n
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Range functions

No loss of generality in writing a range function

τ : N0 → R+ : n→ τn

in the form

τn =
1

n
(log n + αn) , n = 1, 2, . . . . (1)

for some deviation function

α : N0 → R : n→ αn

αn = nτn − log n, n = 1, 2, . . .
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Zero-one law for graph connectivity

Theorem 1 For any range function τ : N0 → R+ written in the

form (1), we have

lim
n→∞

P (n; τn) =















0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

Critical scaling

τ⋆
n =

log n

n
, n = 1, 2, . . .

acts as boundary in the space of scalings.
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Several proofs

• Several representations for P (n; τ)

• Method of first and second moments applied to the number of

breakpoint users

• An interpolation result

– Results by P. Lévy (1939) for maximal spacings

– Poisson convergence for the the number of breakpoint users
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A proof of Theorem 1

by counting

the number of breakpoint nodes
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Breakpoint nodes

• For each i = 1, . . . , n, node i is said to be a breakpoint node

in G(n; τ) whenever

– it is not the leftmost node in [0, 1] and

– there is no node in the random interval [Xi − τ, Xi].

• The number Cn(τ) of breakpoint nodes in G(n; τ) is given by

Cn(τ) =
n
∑

k=2

χn,k(τ)

with indicators

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n + 1.
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• For all τ ∈ (0, 1),

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n]

= P [Cn(τ) = 0] .

For all τ ∈ (0, 1),

Cn(τ) + 1 = Number of connected components

in G(n; τ)
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For future reference

• For all τ ∈ (0, 1) and all n = 1, 2, . . .,

E [Cn(τ)] = (n− 1) (1− τ)
n

and

E
[

Cn(τ)2
]

= E [Cn(τ)] + (n− 1)(n− 2) (1− 2τ)n
+

= (n− 1) (1− τ)
n

+ (n− 1)(n− 2) (1− 2τ)
n
+
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• Observe that

Cn(τ)2 =

(

n
∑

k=2

χn,k(τ)

)2

=

n
∑

k=2

χn,k(τ)

+
n
∑

k,ℓ=2,k 6=ℓ

χn,k(τ)χn,ℓ(τ)

• For all k, ℓ = 1, . . . , n, with k 6= ℓ,

E [χn,k(τ)] = P [Ln,k > τ ] = (1− τ)n

and

E [χn,k(τ)χn,ℓ(τ)] = P [Ln,k > τ, Ln,ℓ > τ ] = (1− 2τ)n
+
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Basic inequalities (I)

For any N-valued rv X with E [X ] <∞, we have

1− E [X ] ≤ P [X = 0]

A proof

Note that

E [X ] =
∞
∑

x=1

xP [X = x]

≥
∞
∑

x=1

P [X = x]

= P [X > 0]
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Basic inequalities (II)

For any N-valued rv X with 0 < E
[

X2
]

<∞, we have

P [X = 0] ≤ 1− E [X ]2

E [X2]
=

Var[X ]

E [X2]

A proof

By Cauchy-Schwartz,

E [X ]
2

= E [1 [X 6= 0] X]
2

≤ E

[

1 [X 6= 0]2
]

E
[

X2
]

so that
E [X ]2

E [X2]
≤ P [X 6= 0]
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A first proof of Theorem 1

Method of first moment:

1− E [Cn(τ)] ≤ P (n; τ)

for each n = 2, 3, . . . and τ in [0, 1].

Method of second moment:

P (n; τ) ≤ 1− E [Cn(τ)]2

E [Cn(τ)2]

for each n = 2, 3, . . . and τ in [0, 1].
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The zero-one law follows if for any range function τ : N0 → R+ of

the form (1), we show that

lim
n→∞

E [Cn(τn)] = 0 if lim
n→∞

αn =∞

and

lim
n→∞

E
[

Cn(τn)2
]

E [Cn(τn)]2
= 1 if lim

n→∞
αn = −∞.

Easily done once we note that

E [Cn(τ)] = (n− 1) (1− τ)
n

+

and

E
[

Cn(τ)2
]

E [Cn(τ)]2
=

1

(n− 1) (1− τ)n
+

+
(n− 2)

(n− 1)

(1− 2τ)
n
+

(1− τ)2n
+

.
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A proof of Theorem 1

by limiting results

on maximal spacings
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Maximal spacing

• The maximal spacing associated with X1, . . . , Xn is given by

Mn := max (Ln,k, k = 2, . . . , n)

• For all τ ∈ (0, 1),

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n]

= P [Mn ≤ τ ] .



41

Variations on a theme by Lévy (1939)

Theorem 2 It holds that

Mn

τ⋆
n

P→ n1

and

nMn − log n =⇒n Gumbel Λ

The R-valued rv X is Gumbel (Λ) if

P [X ≤ x] = e−e−x

, x ∈ R
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Relevance?

For each x in R, consider the range function σ(x) : N0 → R+ given

by

σn(x) =

(

log n + x

n

)

+

, n = 1, 2, . . .

and

σn(x) =
log n + x

n
= τ⋆

n +
x

n

for n large enough.
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For n large enough,

P (n; σn(x)) = P [Mn ≤ σn(x)]

= P

[

Mn ≤
log n + x

n

]

= P [nMn − log n ≤ x]

→n e−e−x

by Theorem 2.
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Interpolating the zero-one law

Theorem 3 For each x in R, we have

lim
n→∞

P (n; σn(x)) = e−e−x

=: g(x)

• Godehardt and Jaworski (1996)

• Subsumes the zero-one law (Theorem 1)

• A natural question: Where is Theorem 3 coming from?
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Theorem 3 implies Theorem 1

• Pick x in R. With limn→∞ αn =∞, we have x ≤ αn for

n ≥ n(x), whence

σn(x) ≤ τn, n ≥ n(x)

• Thus, by monotonicity,

P (n; σn(x)) ≤ P (n; τn), n ≥ n(x)

• Letting n go to infinity, we have

g(x) = lim
n→∞

P (n; σn(x)) ≤ lim inf
n→∞

P (n; τn)

and the one-law follows since

1 = lim
x→∞

g(x) ≤ lim inf
n→∞

P (n; τn)
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• Pick x in R. With limn→∞ αn = −∞, we have αn ≤ x for

n ≥ n(x), whence

τn ≤ σn(x), n ≥ n(x)

• Thus, by monotonicity,

P (n; τn) ≤ P (n; σn(x)), n ≥ n(x)

• Letting n go to infinity, we have

lim sup
n→∞

P (n; τn) ≤ g(x) = lim
n→∞

P (n; σn(x))

and the zero-law follows since

lim sup
n→∞

P (n; τn) ≤ lim
x→∞

g(x) = 0
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Strengthening Theorem 1

Theorem 4 For any range function τ : N0 → R+ written in the

form (1), we have

lim
n→∞

P (n; τn) =















0 iff limn→∞ αn = −∞

1 iff limn→∞ αn = +∞.
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Preparing the proof of Theorem 2

For each n = 2, 3, . . ., write

Λn = nMn − log n

so that

Mn

τ⋆
n

=
1

τ⋆
n

· 1

n
(Λn + log n)

= 1 +
Λn

log n

Thus, Λn =⇒n Λ implies

Λn

log n
=⇒n 0 whence

Mn

τ⋆
n

P→ n1.
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Mn

τ⋆

n

P→ n1 implies

Lemma 1 The threshold function τ⋆ is a weak threshold in the

sense that

lim
n→∞

P (n; τn) = 0 if lim
n→∞

τn

τ⋆
n

= 0

while

lim
n→∞

P (n; τn) = 1 if lim
n→∞

τn

τ⋆
n

=∞

for range function τ : N0 → R+.
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Mn

τ⋆

n

P→ n1 implies

Lemma 2 The threshold function τ⋆ is a strong threshold in the

sense that

lim
n→∞

P (n; cτ⋆
n) =















0 if 0 < c < 1

1 if 1 < c.

Best possible result

Zero− one Law =⇒ Strong threshold =⇒Weak threshold
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A very strong threshold

Theorem 5 For any range function τ : N0 → R+ written in the

form (1), we have

lim
n→∞

P (n; τn) =















0 iff limn→∞ αn = −∞

1 iff limn→∞ αn = +∞.

τn =
1

n
(log n + αn) , n = 1, 2, . . . .

Appropriate to call the threshold function τ⋆ a very strong

threshold – Early indicator that the phase transition will be sharp
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A useful representation of the spacings

Consider a sequence {ξ, ξn, n = 1, 2, . . .} of i.i.d. R+-valued rvs

with ξ > 0 a.s. and set

Tn = ξ1 + . . . + ξn, n = 1, 2, . . .

Lemma 3 With ξ exponentially distributed with parameter 1, we

have

(Ln,1, . . . , Ln,n+1) =st

(

ξ1

Tn+1
, . . . ,

ξn+1

Tn+1

)
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A proof of Theorem 2

Fix n = 1, 2, . . .. We have

Mn = max
k=2,...,n

Ln,k

=st max
k=2,...,n

(

ξk

Tn+1

)

=
1

Tn+1

(

max
k=2,...,n

ξk

)
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Therefore,

nMn − log n =st

n

Tn+1

(

max
k=2,...,n

ξk

)

− log n

=
n

Tn+1

(

max
k=2,...,n

ξk − log n

)

+

(

n

Tn+1
− 1

)

· log n

with
(

n

Tn+1
− 1

)

· log n =
n

Tn+1

(

1− Tn+1

n

)

· log n

=
n

Tn+1
·
√

n

(

1− Tn+1

n

)

· log n√
n
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But, by SLLNs

lim
n→∞

Tn+1

n
= 1 a.s.

while CLT yields

√
n

(

Tn+1

n
− 1

)

=⇒n σ2U

with U =st N(0, 1) and σ2 = 1.

Therefore,
(

n

Tn+1
− 1

)

· log n =
n

Tn+1
·
√

n

(

1− Tn+1

n

)

· log n√
n

=⇒n 0
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Finally, for each x in R,

P

[

max
k=2,...,n

ξk − log n ≤ x

]

= P [ξk ≤ x + log n, k = 2, . . . n]

=
n
∏

k=2

P [ξk ≤ x + log n]

=
(

1− e−(x+log n)
)n−1

=

(

1− 1

n
e−x

)n−1

→n g(x)

In short,

max
k=2,...,n

ξk − log n =⇒n Gumbel Λ
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THE WIDTH OF THE PHASE TRANSITION

AND POISSON CONVERGENCE
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GRG G(n; τ) on [0, 1]

• A population of n nodes located at X1, . . . , Xn in [0, 1]

• Nodes i and j are connected if |Xi −Xj | ≤ τ

• Assume X1, . . . , Xn i.i.d. and uniformly distributed on [0, 1]

For each n = 2, 3, . . ., we have

P (n; τ) := P [G(n; τ) is connected] , τ ≥ 0
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Phase transitions
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The width of the phase transition

• For n = 2, 3, . . . and a ∈ (0, 1), let τn(a) denote the unique

solution to

P (n; τ) = a, τ ∈ (0, 1).

• Also define the transition width

δn(a) := τn(1− a)− τn(a), a ∈ (0,
1

2
).

Question – How does δn(a) vary with n large? Beyond

Goel et al.
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Main result – Very sharp asymptotics

Theorem 6 For every a in the interval (0, 1),

τn(a) =
log n

n
− log

(

log

(

1

a

))

· 1

n
+ o

(

n−1
)

.

Corollary 1 For every a in the interval (0, 1
2 ), we have

δn(a) = log

(

log a

log(1− a)

)

· 1

n
+ o

(

n−1
)
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Goel et al. (d = 1)

• For every monotone graph property A,

δA,n(a) = O

(

√

− log a

n

)

.

• There exists some monotone graph property, say B, such that

δB,n(a) = Ω

(

√

− log a

n

)

.

Theorem 6 gives sharper (and exact) asymptotics in the case of

graph connectivity!
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The big picture (revisited)

• Guessing Theorem 6 from Theorem 3

• Poisson convergence (Theorem 9)

– Poisson approximation by Chen-Stein method

– Theorem 9 implies Theorem 3 which implies Theorem 6

– Information on rate of convergence, hence a handle on

finite node graphs!
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Range functions

No loss of generality in writing a range function

τ : N0 → R+ : n→ τn

in the form

τn =
1

n
(log n + αn) , n = 1, 2, . . . . (2)

for some

α : N0 → R : n→ αn

αn = nτn − log n, n = 1, 2, . . .
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Zero-one Law for graph connectivity

Theorem 1 For any range function τ : N0 → R+ written in the

form (2), we have

lim
n→∞

P (n; τn) =















0 iff limn→∞ αn = −∞

1 iff limn→∞ αn = +∞.

Critical scaling

τ⋆
n =

log n

n
, n = 1, 2, . . .

acts as boundary in the space of scalings.
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Solving P (n; τ) = a?

• Interpolate between 0 and 1 through mild fluctuations

about τ⋆ : N0 → R+

• For each x in R, consider the range function σ(x) : N0 → R+

given by

σn(x) =

(

log n + x

n

)

+

, n = 1, 2, . . .

and

σn(x) =
log n + x

n
= τ⋆

n +
x

n

for n large enough.
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Interpolating the zero-one law

Theorem 3 For each x in R, we have

lim
n→∞

P (n; σn(x)) = e−e−x

=: g(x)
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Guessing Theorem 6 from Theorem 3

• For each x in R, Theorem 3 yields the approximation

P (n; σn(x)) ≃ g(x)

for large enough n.

• The mapping g : R→ R+ : x→ g(x) is strictly monotone

and continuous with limx→−∞ g(x) = 0 and limx→∞ g(x) = 1.

• Thus, for each a ∈ (0, 1), there exists a unique scalar xa such

that g(xa) = a, namely

xa = − log (− log a) .

• Given a ∈ (0, 1), we find

P (n; σn(xa)) ≃ a
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for large n.

• By definition,

P (n; τn(a)) = a

so that

P (n; σn(xa)) ≃ P (n; τn(a))

for large n.

• This strongly suggests that asymptotically σn(xa) and τn(a)

behave in tandem, laying the grounds for the validity of

τn(a) = σn(xa) + o(n−1)

or equivalently,

τn(a) =
log n

n
− log

(

log

(

1

a

))

· 1

n
+ o

(

n−1
)

.
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Origins of Theorem 3?

• Property of maximal spacings (Lévy 1939)

– Makes sense only for d = 1

lim
n→∞

P (n; σn(x)) = lim
n→∞

P [Mn ≤ σn(x)]

• Poisson convergence

– Works (in principle) for all dimensions

lim
n→∞

P (n; σn(x)) = lim
n→∞

P [Cn(σn(x)) = 0]
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(Classical) Poisson convergence

For each p ∈ [0, 1], let {Bn(p), n = 1, 2, . . .} denote a collection of

i.i.d. {0, 1}-valued (Bernoulli) rvs with

P [Bn(p) = 1] = 1− P [Bn(p) = 0] = p, n = 1, 2, . . .

and define

Sn(p) := B1(p) + . . . + Bn(p), n = 1, 2, . . .

Sn(p) =st Bin(n; p)
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Theorem 7 Consider a [0, 1]-valued sequence {pn, n = 1, 2, . . .}
with

lim
n→∞

npn = λ

for some λ > 0. Then, it holds that

Sn(pn) =⇒n Π(λ)

where Π(λ) denotes a Poisson rv with parameter λ.

For n large,

pn ∼
λ

n
and Sn(pn) ≃st Π(npn)
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The Poisson paradigm

• For each r = 1, 2, . . ., let

{Br,k(pr,k), k = 1, . . . , kr}

denote a collection of {0, 1}-valued rvs, which are not

necessarily independent, and write

Sr(pr,1, . . . , pr,kr
) = Br,1(pr,1) + . . . + Br,kr

(pr,kr
)
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• A typical result takes the following form: With

limr→∞ kr =∞, if

lim
r→∞

(

max
k=1,...,kr

pr,k

)

= 0

and

lim
r→∞

(pr,1 + . . . + pr,kr
) = λ

for some λ > 0, then under additional conditions of

vanishingly weak correlations,

Sr(pr,1, . . . , pr,kr
) =⇒r Π(λ)

Thus,

E [Sr(pr,1, . . . , pr,kr
)] = pr,1 + . . . + pr,kr

≃ λ

and

Sr(pr,1, . . . , pr,kr
) ≃st Π(λ)
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Obvious ideas

Via pmfs:

lim
r→∞

P [Sr(pr,1, . . . , pr,kr
) = x] =

λx

x!
e−λ, x ∈ N

Via pgfs:

lim
r→∞

E

[

zSr(pr,1,...,pr,kr )
]

= e−λ(1−z), z ∈ R
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Via the method of moments: For each p = 0, 1, . . .,

lim
r→∞

E [Sr(pr,1, . . . , pr,kr
)p] = E [Π(λ)p]

Via the method of factorial moments – Brun’s Sieve: For each

p = 0, 1, . . .,

lim
r→∞

E

[

p
∏

ℓ=0

(Sr(pr,1, . . . , pr,kr
)− ℓ)

]

= λp+1
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Total variation

For pmfs µ and ν on N, with X ∼ µ and with Y ∼ ν,

dTV (µ; ν) :=
1

2

∞
∑

x=0

|µ(x)− ν(x)| = dTV (X ; Y )

This defines a distance on the space of all pmfs on N!

For N-valued rvs {X, Xn, n = 1, 2, . . .}, Xn =⇒n X if and only if

lim
n→∞

dTV (Xn; X) = 0
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The coupling inequality

Lemma 4 For pmfs µ and ν on N, we have

dTV (µ; ν) ≤ P [X 6= Y ]

for any pair of N-valued rvs X and Y , with X ∼ µ and with Y ∼ ν,

which are defined on a common probability space (Ω,F , P).

A pair of N-valued rvs X and Y , with X ∼ µ and with Y ∼ ν,

which are defined on the common probability space (Ω,F , P) is

called a coupling for the pair of pmfs µ and ν.
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dTV (µ; ν)

=
1

2

∞
∑

x=0

|P [X = x]− P [Y = x] |

=
1

2

∞
∑

x=0

|P [X 6= Y, X = x]− P [X 6= Y, Y = x] |

≤ 1

2

∞
∑

x=0

(P [X 6= Y, X = x] + P [X 6= Y, Y = x])

≤ 1

2

∞
∑

x=0

P [X 6= Y, X = x] +
1

2

∞
∑

x=0

P [X 6= Y, Y = x]

= P [X 6= Y ]
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Maximal coupling

Theorem 8 For pmfs µ and ν on N, we have

dTV (µ; ν) = inf (P [X 6= Y ] : (X, Y ) ∈ C(µ, ν))

where C(µ, ν) denotes the collection of all couplings for the pair µ

and ν.

Corollary 2 For pmfs µ and ν on N, there exists a coupling

(X⋆, Y ⋆) in C(µ, ν) such that

dTV (µ; ν) = P [X⋆ 6= Y ⋆]

Such a coupling is called a maximal coupling for the pair µ and ν.
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An easy example

• Pick 0 < p < p′ < 1. It is easy to verify that

dTV (B(p), B(p′)) = |p− p′|

• The independent coupling is not maximal

• The maximal coupling is achieved by taking

B⋆(p) = 1 [U ≤ p] and B⋆(p′) = 1 [U ≤ p′]

with U uniform on (0, 1). Indeed,

P [1 [U ≤ p] 6= 1 [U ≤ p′]] = P [p < U ≤ p′] = |p− p′|



82

A useful fact via coupling

Proposition 1 For arbitrary pmfs µ1, . . . , µn, ν1, . . . , νn on N, it

holds

dTV (µ1 ⋆ . . . ⋆ µn; ν1 ⋆ . . . ⋆ νn) ≤
n
∑

i=1

dTV (µi; νi)
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Proposition 2 Consider mutually independent N-valued rvs

X1, . . . , Xn defined on a common probability space with Xi ∼ µi

for all i = 1, . . . , n. Similarly, consider mutually independent

N-valued rvs Y1, . . . , Yn defined on a common (possibly different)

probability space with Yi ∼ νi for all i = 1, . . . , n. Then, it holds

dTV (X1 + . . . + Xn; Y1 + . . . + Yn) ≤
n
∑

i=1

dTV (Xi; Yi)
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A proof of Proposition 1

• For each i = 1, . . . , n, consider any coupling (Xi, Yi) in C(µi, νi)

such that the N2-valued rvs (X1, Y1), . . . , (Xn, Yn) are mutually

independent pairs defined on a common probability space.

• By construction,

X1 + . . . + Xn ∼ µ1 ⋆ . . . ⋆ µn

and

Y1 + . . . + Yn ∼ ν1 ⋆ . . . ⋆ νn
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• By the coupling inequality,

dTV (µ1 ⋆ . . . ⋆ µn; ν1 ⋆ . . . ⋆ νn)

= dTV (X1 + . . . + Xn; Y1 + . . . + Yn)

≤ P [X1 + . . . + Xn 6= Y1 + . . . + Yn]

≤ P [∪n
i=1[Xi 6= Yi]]

≤
n
∑

i=1

P [Xi 6= Yi]

• Now use the maximal coupling for each i = 1, . . . , n so that

dTV (µi; νi) = P [X⋆
i 6= Y ⋆

i ]

so that

dTV (µ1 ⋆ . . . ⋆ µn; ν1 ⋆ . . . ⋆ νn) ≤
n
∑

i=1

dTV (µi; νi)
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An easy Poisson approximation result

• Consider a collection {Bk(pk), k = 1, 2, . . . , n} of mutually

independent {0, 1}-valued (Bernoulli) rvs with

P [Bk(pk) = 1] = 1− P [Bk(pk) = 0] = pk, k = 1, . . . , n

and define

Sn := B1(p1) + . . . + Bn(pn).

• Also write

λn = p1 + . . . + pn.
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Question – How well is Sn approximated by a Poisson rv, say

with parameter λn? In particular, what can we say about

dTV (Sn; Π(λn))?

Answer – With mutually independent Poisson rvs

Π(p1), . . . , Π(pn), we get

dTV (Sn; Π(λn))

= dTV (B1(p1) + . . . + Bn(pn); Π(p1) + . . . + Π(pn))

≤
n
∑

i=1

dTV (Bi(pi); Π(pi)).
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Computing dTV (B(p); Π(p)) (0 < p < 1)

• The maximal coupling (B⋆(p), Π⋆(p)) is given by

P [B⋆(p) = x, Π⋆(p) = y]

=







































1− p if x = y = 0

py

y! e
−p if x = 1, y = 1, 2, . . .

e−p − (1− p) if x = 1, y = 0
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• It is easy to see that

P [B⋆(p) 6= Π⋆(p)] =
(

e−p − (1− p)
)

+
∞
∑

y=2

py

y!
e−p

=
(

e−p − (1− p)
)

+
(

1− e−p − pe−p
)

=
(

1− e−p
)

p

Thus,

dTV (B(p); Π(p)) ≤
(

1− e−p
)

p ≤ p2

for all 0 < p < 1.



90

A Poisson approximation is born!

Thus,

dTV (Sn; Π(λn)) ≤
n
∑

i=1

dTV (Bi(pi); Π(pi))

≤
n
∑

i=1

p2
i

With µ = Π(µ) and λ = Π(λ),

dTV (Π(µ); Π(λ)) ≤ |µ− λ|
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Order statistics

• Let Xn,1, . . . , Xn,n denote the locations of the n nodes

arranged in increasing order, i.e.,

Xn,1 ≤ . . . ≤ Xn,n

with the convention Xn,0 = 0 and Xn,n+1 = 1.

• Also define

Ln,k := Xn,k −Xn,k−1, k = 1, . . . , n + 1.

• For all τ ∈ (0, 1),

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n]
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A useful fact

• For any subset I ⊆ {1, . . . , n},

P [Ln,k > tk, k ∈ I] =

(

1−
∑

k∈I

tk

)n

+

, tk ∈ [0, 1], k ∈ I

with the notation

xn
+ =















xn if x ≥ 0

0 if x ≤ 0.

Leads to closed form expression for P (n; τ)
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Breakpoint nodes

• For each i = 1, . . . , n, node i is said to be a breakpoint node

in G(n; τ) whenever

– it is not the leftmost node in [0, 1] and

– there is no node in the random interval [Xi − τ, Xi].

• The number Cn(τ) of breakpoint nodes in G(n; τ) is given by

Cn(τ) =
n
∑

k=2

χn,k(τ)

with indicators

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n + 1.
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• For all τ ∈ (0, 1),

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n]

= P [Cn(τ) = 0] .

For all τ ∈ (0, 1),

Cn(τ) + 1 = Number of connected components

in G(n; τ)
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For future reference

• For all τ ∈ (0, 1) and all n = 1, 2, . . .,

E [Cn(τ)] = (n− 1) (1− τ)
n

and

E
[

Cn(τ)2
]

= E [Cn(τ)] + (n− 1)(n− 2) (1− 2τ)n
+

= (n− 1) (1− τ)
n

+ (n− 1)(n− 2) (1− 2τ)
n
+
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Poisson convergence

Theorem 9 For each x in R,

Cn(σn(x)) =⇒n Π(e−x)

where Π(µ) denotes a Poisson rv with parameter µ, so that

lim
n→∞

P (n; σn(x)) = e−e−x

Godehardt and Jaworski (1996)

Poisson approximation (Han and Makowski 2006) – Finite node

population
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Poisson approximation

Theorem 10 For each n = 2, 3, . . . and τ in the interval (0, 1), it

holds that

dTV (Cn(τ); Π(λn(τ))) ≤ Bn(τ)

with

λn(τ) = E [Cn(τ)] = (n− 1) (1− τ)
n

and

Bn(τ) = (n− 1) (1− τ)
n − (n− 2)

(1− 2τ)
n
+

(1− τ)n
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Theorem 10 implies Theorem 9

The triangular inequality yields

dTV (Cn(τ); Π(e−x))

≤ dTV (Cn(τ); Π(λn(τ))) + dTV (Π(λn(τ)); Π(e−x))

with

λn(τ) = E [Cn(τ)] = (n− 1) (1− τ)n

But we have

dTV (Π(λn(τ)); Π(e−x)) ≤ |λn(τ)− e−x|

and

dTV (Cn(τ); Π(λn(τ))) ≤ Bn(τ)
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Substitute

τ ← σn(x)

and check that

Bn(τ)→n 0

and

λn(τ)− e−x →n 0

Corollary 3 For each n = 2, 3, . . . and τ in the interval (0, 1), it

holds that

dTV (Cn(τ); Π(e−x)) ≤ Bn(τ) + |λn(τ)− e−x|
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Finite node approximations

• For each x in R, Corollary 3 yields

|P [Cn(τ) = 0]− e−e−x | ≤ 2Bn(τ) + 2|λn(τ)− e−x|

for each n = 2, 3, . . . and τ in the interval (0, 1)

• Pick a in the interval (0, 1) and select xa as the unique solution

to g(x) = a, namely

xa = − log (− log a)

• Obviously,

e−xa = − log a
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• Hence,

|P [Cn(τ) = 0]− a| ≤ 2Bn(τ) + 2|λn(τ) + log a|

for each n = 2, 3, . . . and τ in the interval (0, 1)

Given ε ∈ (0, 1) and the number n of nodes, select τ ∈ (0, 1) so that

2Bn(τ) + 2|λn(τ) + log a| ≤ ε

Given ε ∈ (0, 1) and τ ∈ (0, 1), select the number n of nodes so that

2Bn(τ) + 2|λn(τ) + log a| ≤ ε
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A proof of Theorem 10

via the Chen-Stein method

The rvs χn,1(τ), . . . , χn,n+1(τ) are negatively related as seen

from the coupling

[(χn,1(τ), . . . , χn,n+1(τ))−i|χn,i(τ) = 1]

= st

(

χn,1

(

τ

1− τ

)

, . . . , χn,n+1

(

τ

1− τ

))

−i

for all i = 1, . . . , n + 1 with

χn,k

(

τ

1− τ

)

≤ χn,k(τ), k = 1, . . . , n + 1
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Basic Chen-Stein inequality becomes

dTV (Cn(τ); Π(λn(τ))) ≤ 1− e−λn(τ)

λn(τ)
(λn(τ)−Var[Cn(τ)])

≤ λn(τ)−Var[Cn(τ)]

λn(τ)

where

λn(τ) = E [Cn(τ)] = (n− 1) (1− τ)n
n

and

λn(τ)−Var[Cn(τ)]

λn(τ)
= Bn(τ)

by direct inspection!
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EXTENSIONS AND VARIATIONS
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• Arbitrary intervals

• Intermittently active nodes

• Non-uniform node placement

• Higher dimensions
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Arbitrary intervals
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The GRG G(n; τ, d)

• A population of n nodes located at X1, . . . , Xn in [0, d] with

d > 0

• Nodes i and j are connected if |Xi −Xj | ≤ τ

• Assume X1, . . . , Xn i.i.d. and uniformly distributed on [0, d]

For each n = 2, 3, . . ., write

P (n; τ, d) = P [G(n; τ, d) connected]

for all τ > 0 and d > 0.



108

Obviously,

P (n; τ, d) = P (n;
τ

d
)

since

(X1, . . . , Xn) =st d(U1, . . . , Un)

where the rvs U1, . . . , Un are i.i.d. and uniformly distributed on

[0, 1]

Here, no loss of generality in taking scaling functions

τ : N0 → R+ : n→ τn and d : N0 → R+ : n→ dn

in the form
τn

dn

=
log n + αn

n
, n = 1, 2, . . . (3)

for some α : N0 → R
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Zero-one law for graph connectivity

Theorem 11 For scaling functions τ, d : N0 → R+ written in the

form (3), we have

lim
n→∞

P (n; τn, dn) =















0 iff limn→∞ αn = −∞

1 iff limn→∞ αn = +∞.

The critical scaling τ⋆ : N0 → R+ is given by

τ⋆
n = dn

log n

n
, n = 1, 2, . . .
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Intermittently active nodes
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The GRG G(n; τ, p)

• A population of n nodes located at X1, . . . , Xn in [0, 1]

• Nodes i and j are connected if |Xi −Xj | ≤ τ

• Assume X1, . . . , Xn i.i.d. and uniformly distributed on [0, 1]

• For each p ∈ [0, 1], let B1(p), . . . , Bn(p) denote a collection of

i.i.d. {0, 1}-valued with the interpretation that for each

i = 1, . . . , n,

Node i active (resp. inactive) if Bi(p) = 1 (resp. Bi(p) = 0)

• Mutual independence of the rvs {X1, . . . , Xn} and

{B1(p), . . . , Bn(p)}
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Non-uniform node placement
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The GRG Gf (n; τ)

• A population of n nodes located at X1, . . . , Xn in [0, 1]

• Nodes i and j are connected if |Xi −Xj | ≤ τ

• Assume X1, . . . , Xn i.i.d. and distributed on [0, 1] according to

some probability distribution function F on [0, 1] with

probability density function (pdf) f

For each n = 2, 3, . . ., write

Pf (n; τ) = P [Gf (n; τ) connected]

for all τ > 0.



114

Assumptions

• The pdf f : [0, 1]→ R+ is continuous

• The pdf f : [0, 1]→ R+ has an isolated minimum at x = ξ in

(0, 1) with

c = min
x∈[0,1]

f(x) = f(ξ) > 0

• There exists an integer k = 1, 2, . . . such that the pdf

f : [0, 1]→ R+ admits 2k + 1 derivatives on (0, 1) with

f (ℓ)(ξ) = 0, ℓ = 1, . . . , 2k and f (2k+1)(ξ) > 0
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Range functions

No loss of generality in writing a range function

τ : N0 → R+ : n→ τn

in the form

τn =
log n− 1

2k
log log n + αn

cn
, n = 1, 2, . . . (4)

for some α : N0 → R
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Zero-one law for graph connectivity

Theorem 12 For any range function τ : N0 → R+ written in the

form (4), we have

lim
n→∞

Pf (n; τn) =















0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

The critical scaling τ⋆⋆ : N0 → R+ is given by

τ⋆⋆
n =

log n− 1
2k

log log n

cn
, n = 1, 2, . . .
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Open questions

For each x in R, consider the range function σ(x) : N0 → R+ given

by

σn(x) =
log n− 1

2k
log log n + x

cn
= τ⋆⋆

n +
x

cn

for n large enough. What is the limit

Cn(σn(x)) =⇒n ?

What are the exact asymptotics of the transition width

δn(a), a ∈ (0,
1

2
)
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Two-dimensional case (d = 2)
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The GRG G2(n; τ)

• A population of n nodes located at X1, . . . , Xn in a compact

convex subset Ω ⊂ R
2

• Nodes i and j are connected if ‖Xi −Xj‖ ≤ τ

• Assume X1, . . . , Xn i.i.d. and uniformly distributed on Ω

For each n = 2, 3, . . ., write

P2(n; τ) = P [G2(n; τ) connected]

for all τ > 0.
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Critical scaling

Critical scaling (for the disk model) is the range function

τ⋆ : N0 → R+ given by

π (τ⋆
n)

2
=

log n

n
, n = 1, 2, . . .

Gupta and Kumar (1998), Kunniyur and Venkatesh (2006)

Perturbation σ(x) : N0 → R+ given by

σn(x) =

√

(

log n + x

πn

)

+

, n = 1, 2, . . .
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Poisson convergence

Poisson convergence for the number of isolated nodes, namely

In(σn(x)) =⇒n Π(e−x)

so that

lim
n→∞

P2(n; σn(x)) = e−e−x

by asymptotic equivalence of connectivity and absence of isolated

nodes.

Poisson approximation not known
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Transition width

Poisson convergence implies

δn(a) =
C(a)

2

√

1

πn log n
(1 + o(1)) ,

as compared to the result by Goel et al., namely

δA,n(a) = O

(

(log n)
3
4

√
n

)
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Conclusions/Extensions

• Poisson convergence is ubiquitous in random graphs (e.g.,

Erdős-Renyi graphs)

– Other properties (e.g., existence of isolated nodes)

– Higher dimensions (e.g., d = 2 by Kunniyur and Venkatesh

(2006))

• Poisson convergence ≡ phase transition? – Chen-Stein method

shows that

P (n; τ) = P [Cn(τ) = 0] ≃ e−(n−1)λ

– Small change in τ yields a moderate change in λ, which in

turn leads to a significant variation in the probability of

graph connectivity


